REGULATIONS COURSE STRUCTURE AND SYLLABUS

SITE-18M REGULATIONS

For

Information Technology

With effective from the Academic Year 2020-21

Chapter - I

B.Tech. Regulations

1.1 Short title and Commencement

The regulations listed under this head are common for all degree level under graduate programs (B.Tech.) offered by the college with effect from the academic year 2020-21 and they are called as "SITE18M" regulations.

The regulations here under are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the program, as may be decided by the Academic Council.

1.2. Definitions

- a. "Commission" means University Grants Commission (UGC)
- b. "Council" means All India Council for Technical Education (AICTE)
- c. "University" Means Jawaharlal Nehru Technological University Kakinada (JNTUK)
- d. "College" means Sasi Institute of Technology & Engineering, Tadepalligudem.
- e. "Program" Means any combination of courses and /or requirements leading to award of a degree
- f. "Course" Means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. For example, (Data Structures) is a course offered at third semester of B.Tech (CST) and its code is (18CTCTT3020)
- h. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum
- i. "Regular Student" means student enrolled into the four year program in the first year

j. "Lateral entry Students" Means student enrolled into the four year program in the second year

1.3. Academic Programs

1.3.1. Nomenclature of Programs

The nomenclature and its abbreviation given below shall continue to be used for the degree programs under the University, as required by the Council and Commission. The name of specialization shall be indicated in brackets after the abbreviation. For e.g. UG engineering degree in Mechanical Engineering program is abbreviated as B.Tech. (ME). Bachelor of Technology (B.Tech.) degree program offered in:

- 1. Civil Engineering(CE)
- 2. Computer Science and Engineering(CSE)
- 3. Computer Science and Technology(CST)
- 4. Electronics and Communication Engineering(ECE)
- 5. Electronics and Communication Technology(ECT)
- 6. Electrical and Electronics Engineering(EEE)
- 7. Information Technology(IT)
- 8. Mechanical Engineering(ME)
- Curriculum framework is important in setting the right direction for a Degree program as it takes into account the type and quantum of knowledge necessary to be acquired by a student to qualify for a award in his/her chosen branch or specialization.
- Besides, this also helps in assigning the credits for each course, sequencing the
 courses semester-wise and finally arriving at the total number of courses to be
 studied and the total number of credits to be earned by a student to fulfill the
 requirements for conferment of degree.
- Each theory course shall consist of five units.

1.3.2. Curriculum Structure

The curriculum structure is designed in such a way that it facilitates the courses required to attain the expected knowledge, skills and attitude by the time of their graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 1.6.3 to 1.6.9) to cover the depth and breadth required for the program and for the attainment of program outcomes of the corresponding program. Each Program of study will be designed to have 40-45 theory courses and 16-18 laboratory courses. The distribution and types of courses offered from the above is indicated in the following table 3.

1.3.3. Induction Program

The Induction Program for two weeks is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students and building of character. Induction program covers:

- Physical activity
- Creative arts
- Universal human values
- Literary and Proficiency modules
- Lectures by Eminent peoples

1.4Admission Criteria

The eligibility criteria for admission into UG engineering programs are as per the norms approved by government of Andhra Pradesh from time to time. The sanctioned seats in each program in the college are classified into CATEGORY-A and CATEGORY-B at first year level and Lateral Entry at second year level.

- **CATEGORY A Seats:** These seats will be filled as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY B Seats:** These seats will be filled by the College as per the norms approved by the Government of Andhra Pradesh.

• **CATEGORY – Lateral Entry Seats:** Lateral entry candidates shall be admitted into the Third semester directly as per the norms approved by government of Andhra Pradesh. The percentages of Category-A, Category-B and Lateral Entry Seats are decided time to time by the Government of Andhra Pradesh.

2. Award of B. Tech. Degree

- a) A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:
 - i. A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
 - ii. The candidate shall register for 160 credits and secure all the 160 credits.
- b) The medium of instruction for the entire under graduate program in Engineering &Technology will be in **English** only.

3. Program Pattern:

- a) Total duration of the of B. Tech (Regular) Program is four academic years
- b) Each Academic year of study is divided into Two Semesters.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- e) The total credits for the Program is 160.
- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned

- branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- i) A student has to register for all courses in a semester.
- i) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- n) Each college shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration/career growth/placements/ opportunities for higher studies/GATE/other competitive exams etc.

4. Registration for Courses:

- a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.
- b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.
- c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.
- **5.** (a) **Award of B. Tech. Degree:** A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
 - ii. The student shall register for 160 credits and must secure all the 160 credits.
 - iii. All students shall mandatorily register for the courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marks allotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.
 - iv. All students shall mandatorily register for NCC/NSS activities and will be required to participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.

v. Credits are defined as per AICTE norm(b) Award of B. Tech. (Honor)/B. Tech. (Minor): B. Tech. with Honors or a B. Tech. with a Minor will be awarded if the student earns 20 additional credits are acquired as per the regulations/guidelines. The regulations/guidelines are separately provided. Registering for an Honors/Minor is optional.

6. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this Condonation concession is applicable only to any two semesters during the entire program.
- c) Shortage of Attendance below 65% in aggregate shall not be condoned.
- d) A student who is short of attendance in a semester may seek re-admission into that semester when offered within 4 weeks from the date of commencement of class work.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 1000/- in the concerned semester shall be payable towards Condonation of shortage of attendance. Students availing Condonation on medical ground shall produce a medical certificate issued by the competitive authority.
- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- i) For induction program attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

7. Evaluation-Distribution and Weightage of marks

- i. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- ii. To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IIITs, IISERs, NITs and Universities.
- iii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iv. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

v. Distribution and Weightage of marks:

The assessment of the student's performance in each course will be as per the details given:

S.No.	Components	Internal	External	Total
1	Theory	30	70	100
2	Engineering	30	70	100
3	Practical	15	35	50
4	Mini Project/Internship/Industrial Training/ Skill Development programs/Research Project	-	50	50
5	Project Work	60	140	200

vi. **Continuous Internal Theory Evaluation:**

a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for duration of 90

minutes and (iii) one assignment for marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.

- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.
- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination section within one week after completion of first mid examination.
- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.
- f) Second mid marks (Mid-2) consisting of marks of online objective examination, descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.
- g) Internal marks can be calculated with 80% Weightage for better of the two mids and 20% Weightage for other mid exam.

Example:

Mid-1 marks = Marks secured in

(Online examination-1 + descriptive examination-1 +one assignment-1)

Mid-2 marks = Marks secured in

(Online examination-2+descriptive examination-2+one assignment-2)

Final internal Marks = (Best of (Mid-1/Mid-2) marks \times 0.8 + Least of (Mid-1/Mid-2) marks \times 0.2)

h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be

displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.

vii. Semester End Theory Examinations Evaluation:

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% Weightage for better of the two tests and 20% Weightage for other test and these are to be added to the marks obtained in day to day work.
- d) Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs in the area of concerned specialization of the UG program. Students shall pursue this course during summer vacation just before its offering as per course structure. The minimum duration of this course is at least 6 weeks. The student shall register for the course as per course structure after commencement of academic year. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements

are as per the norms of the University. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. A certificate from industry/skill development center shall be included in the report. The report and the oral presentation shall carry 40% and 60% Weightage respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the University.

- e) The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.
- f) Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.
- g) **Procedure for Conduct and Evaluation of MOOC:** There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks)

offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM /NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.

h) Major Project (Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

Evaluation: The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

8 Results Declaration:

- i. Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- ii. With the approval of academic council, the results shall be submitted to the University to get the Approval from Honourable Vice-Chancellor.

- iii. The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)
- iv. A copy of approved results in a CD shall be submitted to the University Examination Center.
- 9. Academic Audit: Academic audit in each semester will be conducted as per norms.
- **10. Recounting or Re-evaluation of Marks in the End Semester Examination:** A student can request for recounting of revaluation of his/her answer book on payment of a prescribed fee as per norms.
- **11. Supplementary Examinations:** A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- **12. Malpractices in Examinations:** Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.
- **13. Promotion Rules:** The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.5 for promotion to higher classes
 - a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.
 - b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
 - c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

14. Course Pattern

- a) The entire course of study is for four academic years; all years are on semester pattern.
- b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.

c) When a student is detained for lack of credits / shortage of attendance, he may be readmitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

15. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

Marks Range Max:100	Marks range Max:50	Level	Letter Grade	Grade point
≥ 90	≥ 45	Outstanding	A+	10
≥80 to <89	≥40 to <44	Excellent	A	9
≥70 to <79	≥35 to <39	Very Good	В	8
≥60 to <69	≥30 to <34	Good	С	7
≥50 to <59	≥25 to <29	Fair	D	6
≥40 to <49	≥20 to <24	Satisfactory	Е	5
<40	<20	Fail	F	0
-		Absent	AB	0

16. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with	≥7.75 (Without any supplementary	From the
Distinction	appearance)	CGPA
First Class	≥ 6.75	secured
Second Class	\geq 5.75 to < 6.75	from
Pass Class	\geq 5.00 to $<$ 5.75	160 Credits

17. Minimum Instruction Days:

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

18. Withholding of Results:

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

19. Transitory Regulations

- a) Discontinued or detained candidates are eligible for re-admission as and when next offered.
- b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.
- c) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.
- d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions have to obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

20. Gap – Year:

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I/II/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

21. General:

- a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- b) The academic regulation should be read as a whole for the purpose of any interpretation.
- c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

ACADEMIC REGULATIONS (SITE18M) FOR B. Tech

(LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2021-22 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

- a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.
- b) The candidate shall register for 122 credits and secure all the 122 credits.
- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B. Tech (lateral entry)
- 3. **Promotion Rules:** A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with	\geq 7.75 (Without any	
Distinction	supplementary appearance)	From the CGPA secured
First Class	≥ 6.75	from 121 Credits from II
Second Class	\geq 5.75 to < 6.75	Year to IV Year
Pass Class	\geq 5.00 to < 5.75	

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

5. All the other regulations as applicable to **B. Tech. 4-year degree course** (Regular) will hold good for **B. Tech.** (Lateral Entry Scheme)

COMMUNITY SERVICE PROJECT

Introduction

- 1. Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- 2. Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- 3. Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- 1. To sensitize the students to the living conditions of the people who are around them,
- 2. To help students to realize the stark realities of the society.
- 3. To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- 4. To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- 5. To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- 6. To help students to initiate developmental activities in the community in coordination with public and government authorities.

7. To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- 1. Every student should put in a minimum of **180 hours** for the Community Service Project during the summer vacation
- 2. Each class/section should be assigned with a mentor.
- 3. Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc
- 4. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in charge.
- 5. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- 6. The final evaluation to be reflected in the grade memo of the student.
- 7. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- 8. Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- 9. Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

1. A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.

- 2. The Community Service Project is a two fold one
 - a) First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers; rather, it could be another primary source of data.
 - b) Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - **-** Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- 1. Positive impact on students' academic learning.
- 2. Improves students' ability to apply what they have learned in "the real world".

- 3. Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.
- 4. Improved ability to understand complexity and ambiguity.

Personal Outcomes

- 1. Greater sense of personal efficacy, personal identity, spiritual growth, and moral development.
- 2. Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- 1. Reduced stereotypes and greater inter-cultural understanding
- 2. Improved social responsibility and citizenship skills
- 3. Greater involvement in community service after graduation

Career Development

- 1. Connections with professionals and community members for learning and career opportunities
- 2. Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- 1. Stronger relationships with faculty
- 2. Greater satisfaction with college
- 3. Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- 1. Satisfaction with the quality of student learning
- 2. New avenues for research and publication via new relationships between faculty and community
- 3. Providing networking opportunities with engaged faculty in other disciplines or institutions
- 4. A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- 1. Improved institutional commitment
- 2. Improved student retention
- 3. Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- 1. Satisfaction with student participation
- 2. Valuable human resources needed to achieve community goals
- 3. New energy, enthusiasm and perspectives applied to community work
- 4. Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMS UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programs
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution

- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programs and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilization of free electricity to farmers and related issues
- 40. Gender ration in schooling level- observation.

Complimenting the community service project, the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested lists of programs are;

Programs for School Children:

- 1. Reading Skill Program (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Program on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Program on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharat
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programs
- 12. Commemoration and Celebration of important days

Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

- 1. Awareness on RTI
- 2. Health intervention programs
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation

- iv. Animal Husbandry
- v. Horticulture
- vi. Fisheries
- vii. Sericulture
- viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
- xii. Excise and Prohibition
- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- 1. Students may not have the expertise to conduct all the programs on their own. The students then can play a facilitator role.
- 2. For conducting special camps like Health related, they will be coordinating with the Government agencies.
- 3. As and when required the College faculty themselves act as Resource Persons.
- 4. Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- 5. And also, with the Governmental Departments. If the program is rolled out, the District Administration could be roped in for the successful deployment of the program.
- 6. An in-house training and induction program could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- a) A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- b) A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.

c) The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

Based on the survey and the specific requirements of the habitation, different awareness campaigns and programs to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Program (Four Weeks)

Along with the Community Awareness Programs, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement program will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programs could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

Course Numbering Scheme

The Course number code consists of 11 alphabets. A typical course number code is illustrated in the following Figure-1.

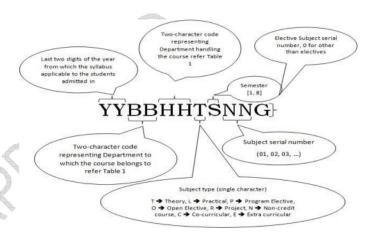


Figure 1: Course Numbering Scheme

The department codes are in given in following table 1.

Table 1: Department Codes

Department	Two-character
	code
Civil Engineering	CE
Electrical & Electronics Engineering	EE
Mechanical Engineering	ME
Electronics & Communication Engineering	EC
Electronics & Communication Technology	ET
Computer Science and Engineering	CS
Computer Science and Technology	CT
Information Technology	IT
Management Science	MS
Mathematics	MA
Physics	PH
Chemistry	СН
English	EG
Biology	BI
Common to All Branches	CM

Example: STLD in 3rd semester for ECE with S. No 2

Course Code: 18ECECT3020

Table 2: Comparison of Number of credits given by AICTE and Approved credits

	No. of Credits											
	Ľ	EC		ECE/ECT EEE		CSE/IT/CST		N	ME		CE	
S. No.	Category	AICTE	Approved	AICTE	Approved	AICTE	Approved	AICTE	Approved	AICTE	AICTE Approved	
1	Humanities and Social Sciences	12	11	12	11	12	11	12	11	12	08	
2	Basic Science courses	25	23	26	25	24	26	25	26	26	26	
3	Engineering Science courses	24	23	20	20	29	29.5	24	23	29	24.5	
4	Professional Core courses	48	56	53	62	49	48.5	48	55	47	56.5	
5	Professional Elective Courses	18	20	18	15	18	18	18	18	23	21	
6	Open elective courses	18	12	18	12	12	12	18	12	11	9	
7	Project work , Seminar and Internship	15	15	11	15	15	15	15	15	12	15	
8	Mandatory Courses	-	-	-	-	-	-	-	-	-	-	
Т	otal Credits	160	160	160	160	160	160	160	160	160	160	

DISCIPLINARY ACTION FOR MALPRACTICES /IMPROPER CONDUCT IN EXAMS

S.	Nature of Malpractices/Improper	Punishment
No.	conduct	1 unishment
	If the candidate:	
	Possesses or keeps accessible in	Expulsion from the examination hall
	examination hall, any paper, note book,	and cancellation of the performance
	programmable calculators, Cell phones,	in that subject only.
1. (a)	pager, palm computers or any other form of	
1. (a)	material concerned with or related to the	
	subject of the examination (theory or	
	practical) in which he is appearing but has	
	not made use of (material shall include any	

	marks on the body of the candidate which can be used as an aid in the subject of the examination)	
1. (b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a

		case is registered against him.
		Expulsion from the examination hall
4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
	Uses objectionable, abusive or offensive	Cancellation of the performance in
	language in the answer paper or in letters to	that subject.
5.	the examiners or writes to the examiner	that subject.
	requesting him to award pass marks.	
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance

11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

MALPRACTICES

- The Principal shall refer the cases of malpractices in Continuous Evaluation and Semester-End Examinations, to Malpractice Enquiry Committee, constituted by him/her for the purpose. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action, against the erring students based on the recommendations of the committee.
- Any action on the part of student at an examination trying to get undue advantage in the performance or trying to help another, or derive the same through unfair means is punishable according to the provisions contained hereunder. The involvement of the Staff, who are in charge of conducting examinations, valuing examination papers and preparing/keeping records of documents relating to the examinations in such acts (inclusive of providing incorrect or misleading information) that infringe upon the course of natural justice to one and all concerned at the examination shall be viewed seriously and recommended for award of appropriate punishment after thorough enquiry.

Ragging

Prohibition of ragging in educational institutions Act 26 of 1997 Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of
 Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a
 student.

Department of Information Technology Course Structure

I B. Tech I Semester

S.	Code	Title	Hours			Credits
No.	Code	Tiue	L	T	P	Credits
01	18CMMAT1010	Engineering Mathematics-I	3	1		4
02	18ITPHT1020	Engineering Physics	3	1		4
03	18CMCST1030	Programming for ProblemSolving	3			3
04	18CMMEL1040	Engineering Graphics	1		4	3
05	18ITPHL1050	Engineering Physics Lab			3	1.5
06	18CMCSL1060	Programming for Problem Solving Lab			4	2
07	18CMMEL1070	Workshop/ManufacturingPractice	0		3	1.5
08	18CMCHN1080	Environmental Science	3			0
	·	Total	13	2	14	19

I B. Tech II Semester

S.	Code Title		Hours		Credits	
No.	Code	Tiue	L	T	P	Credits
01	18CMEGT2010	Technical English	3			3
02	18CMMAT2020	Engineering Mathematics-II	3	1		4
03	18CMCHT2030	Engineering Chemistry	3	1		4
04	18CMEET2040	Basic Electrical Engineering	3	1		4
05	18CMEGL2050	English Communication Skills Lab			2	1
06	18CMCHL2060	Engineering Chemistry Lab			3	1.5
07	18CMEEL2070	Basic Electrical Engineering Lab			3	1.5
08	18CMMSN2080	Indian Constitution, Professional	3			0
		Ethics & Human Rights				
Total			15	3	8	19

II B. Tech I Semester

S. No.	Code	Title	Hours		Credits	
S. 1NO.	Code	Tiue	L	T	P	Credits
01	18CMMAT3010	Engineering Mathematics- III	3	1		4
02	18ITECT3020	Digital Electronics	3			3
03	18ITECT3030	Analog Electronic Circuits	3			3
04	18ITITT3040	Discrete Mathematics	3	1		4
05	18ITITT3050	Data Structures	3			3
06	18ITECL3060	Analog & Digital Electronics Lab			3	1.5
07	18ITITL3070	IT Workshop Lab			3	1.5
08	18ITITL3080	Data Structures Lab			3	1.5
	Total		15	2	9	21.5

II B. Tech II Semester

S.	Code	Title	H	ours		Credits
No.	Coue	Titte		T	P	Credits
01	18ITECT4010	Signals & Systems	3			3
02	18CMCET4020	Engineering Mechanics	3			3
03	18ITITT4030	Computer Organization	3			3
04	18ITITT4040	Algorithm Design and Analysis	3			3
05	18ITITT4050	Java Programming	3			3
06	18ITITL4060	Computer Organization Lab			3	1.5
07	18ITITL4070	Algorithm Design and AnalysisLab			3	1.5
08	18ITITL4080	Java Programming Lab			3	1.5
		Total	15	0	9	19.5

III B. Tech I Semester

S.	Code	Title	H	ours	5	Credits
No.	Code	Tiue	L	T	P	Credits
01	18CMMST5010	Management Science				3
02	18ITITT5020	Data Base Management Systems				3
03	18ITITT5030	Operating Systems				3
04	18ITITP504X	Professional Elective-I				3
05	18ITXXO505X	Open Elective-I				3
06	18ITITL5060	Data Base Management Systems Lab			3	1.5
07	18ITITL5070	Operating Systems Lab			3	1.5
08	18CMAHS5080	Soft Skills & Aptitude Builder - 1				2
09	18CMBIN5090	Biology for Engineers				0
		Total	19	0	6	20

Program Electives -I				
18ITITP504A UI Design				
18ITITP504B	Artificial Intelligence			

III B. Tech II Semester

S.	Code	Title	H	ours	5	Credits
No.	Code	Tiue	L	T	P	Creans
01	18CMMST6010	Engineering Economics & Financial	3			3
		Management				
02	02 18ITITT6020 Data Warehousing and Data Mining		3			3
03	18ITITT6030 Computer Networks		3			3
04	18ITITT6040	Software Engineering				3
05	18ITITP605X	605X Professional Elective-II				3
06	06 18ITXXO606X Open Elective-II		3			3
07	18ITITL6070	O Software Engineering Lab			3	1.5
08	18ITITL6080	Data Mining using Python Lab			3	1.5
09	18CMAHS6090	IS6090 Soft Skills & Aptitude Builder - 2				2
		Total	20		6	23

Program Electives -II						
18ITITP605A R Programming						
18ITITP605B	Software Quality Assurance					

IV B. Tech I Semester

***	Code	Title	Н	our	S	Credits
W	Code	Tiue	L	T	P	Creatts
01	18ITITT7010	Machine Learning	3			3
02	18ITITP702X	Professional Elective-III	3			3
03	18ITITP703X	Professional Elective-IV	3			3
04	18ITITP704X	Professional Elective-V				3
05	18ITXXO705X	Open Elective-III	3			3
06	18ITXXO706X	Open Elective-IV				3
07	18ITITL7070	Machine Learning Lab			3	1.5
08	18ITITL7080	Object Oriented Analysis and Design			3	1.5
		Lab				
09	18ITITS7090	MEAN Stack Technologies			4	2
10	18ITITR7100 Internship					3
	Tota				10	26

Program Electives –III		
18ITITP702A Distributed Databases		
18ITITP702B	Big Data Analytics	

Program Electives –IV						
18ITITP703A Software Project Management						
18ITITP703B	Software Testing Methodologies					

Program Electives –V					
18ITITP704A Cryptography & Network Securit					
18ITITP704B	Cloud Computing				

IV B. Tech II Semester

S.	Code	Title		our	S	Credits
No.	Code	Title	L	T	P	Credits
01	18ITITR8010	Project Phase -II			24	12
		Total			24	12

ENGINEEI	RING MATHEMATICS	S-I		
Subject Code	18CMMAT1010	IA Marks	30	
Number of Lecture Hours/Week	3(L) + 1(T)	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 04			
Unit -1			Hours	
First order and first degree Ordinary	Differential Equations			
Exact, reducible to exact, linear and I	Bernoulli's differential ed	quations. Orthogonal	10	
trajectories in Cartesian and polar form. Simple problems on Newton's law of				
cooling. Law of natural growth and dec	eay.			
Unit -2				
Linear differential equations with	constant coefficients:	Solutions of second	08	
and higher order differential equation	s - inverse differential of	operator methods,		
Method of variation of parameters. App	olication: LCR Circuits			
Unit – 3				
Partial derivatives – Definition ar	nd Euler's theorem (w	ithout proof), total		
derivatives, partial differentiation of				
dependence. Taylor's and Maclaurin	's theorems for function	n of two variables	10	
(statement only). Maxima and minim	a- LaGrange's method	of undetermined		
multipliers				
Unit – 4				
First order Partial differential equati	ions:			
Formation of Partial differential equation	ons by elimination of arbi	trary constants and		
arbitrary functions – solutions of first o	rder linear (Lagrange) eq	uation and nonlinear		
(standard type) equations			10	
Higher order Partial differential equ				
Solutions of Homogeneous and Non Ho	•	•		
with constant coefficients –Classification	on of partial differential e	quations.		
Unit – 5				
Double and triple integrals: Evaluation	on of double and triple in	tegrals.Evaluation		
of double integrals by changing the ord	der of integration and by	changing into polar		
co-ordinates. Beta and gamma function	s and their properties Ve	ctor Calculus –	10	
Gradient – Divergence - Curl - Line is	ntegrals-definition andpr	oblems, surface and	12	
volume integrals definition, Green's the	heorem in a plane,			
Stokes and Gauss-divergence theorems	(without proof) and prob	olems.		

	Text(T) / Reference(R) Books:
T1	Higher Engineering Mathematics, B S Grewal, Khanna Publishers, 44th edition, 2016
T2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 9th edition, 2013
R1	Higher Engineering Mathematics, B V Ramana, Tata Mc Graw-Hill, 2006
R2	A Text Book of Engineering Mathematics, NPBali and Manish Goyal, Laxmi publications
R3	Higher Engineering Mathematics, HKDass and Er. RajnishVerma, S.Chand publishing, 1st edition, 2011.

Cour	Course Outcomes: On completion of this course, students can		
CO1	Solve first order differential equations		
CO2	Solve linear differential equations with constant coefficients		
CO3	Find the extrema of a function		
CO4	Solve partial differential equations		
CO5	Evaluate multiple integrals		
CO6	Verify vector integral theorems		

EN	GINEERING PHYSICS		
	ysics & Semiconductor (Optoelectronics	
Subject Code	18ITPH1020	IA Marks	30
Number of Lecture Hours/Week	3(L) + 1(T)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 04		<u> </u>
Unit -1			Hours
Electronic materials			
Free electron theory-Classical &Q	uantum theory, Density of	of states, Fermi level,	
Occupation probability, Bloch theor	rem, Kronig-Penny model	(to introduce origin of	10
band gap), E-k diagram and Effect	ive mass. Types of electro	onic materials: metals,	10
semiconductors, and insulators.			
Unit -2		1	
Semiconductors			
Intrinsic and extrinsic semicondu	ctors, Dependence of Fe	rmi level on carrier-	
concentration and temperature (eq	uilibrium carrier statistics	s), Carrier generation	10
and recombination, Carrier transpo	ort: diffusion and drift, p-r	n junction, Hall effect	10
and its applications.			
Unit – 3			
Light-semiconductor interaction			
Types of Semiconductor materials	of interest for optoelectro	nic devices, band gap	
modification, Hetero structures,	Optical transitions in b	oulk semiconductors:	10
absorption, spontaneous emission,	and stimulated emission, J	oint density of states,	10
Density of statesfor photons, Transi	ition rates (Fermi's golden	rule), Optical loss and	
gain, Photovoltaic effect.			
Unit – 4			
Semiconductor light emitting dio	des (LEDs)		
Direct and indirect band gap semice	onductors, Injection Electro	o luminescence, LED:	
Device structure, materials, characteristics, Laser diode, Quantum-well, -wire, and -			10
dot based lasers.			
Unit – 5			
Photodetectors & Low-dimension	al optoelectronic devices		
General properties of Photo detect	ors, Photo conductors, Ty	pes of semiconductor	
photo detectors -p-n junction, PIN,	and Avalanche and the	ir structure, materials,	10
working principle, and characteristi	cs, Noise limits on perform	nance, Solar cells.	

Tex	Text(T) / Reference(R) Books:		
T1	Solid State Physics, S O Pillai, New Age Publications		
T2	Fundamentals of Photonics, B E A Saleh and M C Teich, John Wiley & Sons		
R1	Engineering Physics, Ch Srinivas, Ch Seshubabu, Cengage learning publications		
R2	Semiconductor Optoelectronic Devices, P Bhattacharya, Prentice Hall of India, 1997		
R3	Semiconductor Optoelectronics, M R Shenoy, NPTEL Course		
R4	Optoelectronic Materials and Devices, Monica Katiyar and Deepak Gupta, NPTEL Course		

Cour	Course Outcomes: On completion of this course, students can	
CO1	Explain the conducting mechanism in metals	
CO2	Estimate the concentration of charge carriers	
CO3	Describe light-semiconductor interaction	
CO4	Illustrate the working function of LEDs and diode lasers	
CO5	Illustrate the working function of photo detectors	
CO6	Illustrate the working function of solar cells	

PROGRAMMI	NG FOR PROBLEM	I SOLVING	
	nmon for all programs		
Subject Code	18CMCST1030	IA Marks	30
Number of Lecture Hours/Week	03	EA Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits - 03	,	
Unit-I: Introduction to computer sys	stems and programn	ning	Hours
History & Hardware Computer Hardware, Components, Ty Introduction to Problem solving Algorithm, Characteristics of Alg Pseudocode, Flowchart, Types of lan Input and Output. Basics of C History and Features of C, Importance Interpreter, Structure of C Program errors.	orithms, Basic ope guages, Relation bet	rations of algorithms, ween Data, Information, nguage, Compiler versus	08
Unit-II: C Expressions, evaluation a Overview of C Character Set, C-Tokens, Data Types,	Variables, Constants,	Operators, Operator	
precedence and Associativity, converting mathematical expressions to C-expressions, evaluation of C-expressions, Input/output functions. Conditional Branching if statement, ifelse statement, Nested ifelse statement, ifelseif ladder, switch statement. Unconditional Branching goto Control flow statements: break, continue. Looping Constructs: do-while statement, while statement, for statement.			12
Unit-III: Arrays and Functions			
Arrays Introduction, 1-D Arrays, Character (Matrix), Multi-Dimensional Arrays. Functions Basics, necessity and advantages, mechanisms, Recursion, Storage Arguments, Conversion from Recursion Strings Working with strings, String Handling	Types of functio Classes, on to Iteration and vice Functions (both libra	ns, Parameter passing Command Line e-versa.	10
Unit-IV: Derived and User Defined	Data types		

Pointers		
Understanding Pointers, Pointer expressions, Pointer and Arrays, Pointers and		
Strings, Pointers to Functions.		
Dynamic Memory Allocation		
Introduction to Dynamic Memory Allocation malloc, calloc, realloc, free.		
Structures and Unions	12	
Defining a Structure, typedef, Advantage of Structure, Nested structures, Arrays of		
Structures, Structures and Arrays, Structures and Functions, Structures and Pointers,		
Defining Unions, Union within union, Structure within union, Union within		
structure, self-referential structures, bitfields, enumerations.		
Unit-V: Preprocessing and File Handling	L	
Preprocessing Directives		
Macro Substitution, File Inclusion, conditional compilation and other directives		
File Management in C		
Introduction to File Management, Modes and Operations on Files, Types of files,		
Error Handling During I/O Operations.		

Tex	Text(T) / Reference(R) Books:	
T1	Computer Programing ANSI C, E Balagurusamy, McGraw Hill Education	
T2	Programming in C, Reema Thareja, Second Edition, Oxford Higher Education	
R1	Computer Basics and C Programming, V Raja Raman, Second Edition	

Course Outcomes: On completion of this course, students can		
CO1	Formulate algorithms, translate them into programs and correct program errors	
CO2	Choose right control structures suitable for the problem to be solved	
CO3	Decompose reusable code in a program into functions (Iterative and recursive)	
CO4	Use arrays, pointers, structures and unions appropriately	
CO5	Explain Memory allocation strategies	
CO6	Store and Retrieve data from permanent storage	

ENGINEERING GRAPHICS			
Subject Code	18CMMEL1040	IA Marks	30
Number of Lecture Hours/Week	1(L)+4(P)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction to Engineering Drawin	g covering, Principles of	Engineering Graphics	
and their significance, usage of Dr	awing instruments, letter	ing, Conic sections -	
Ellipse, Parabola, Hyperbola (Gener	al method only); Cycloid	, Epicycloid,	10
Hypocycloid and Involute; Scales –	Plain, Diagonal and Verni	er Scales;	
Unit -2			
Projections of Points and lines inc	clined to both planes; P	rojections of planes	08
inclined to one plane		Vo	
Unit – 3			
Projections of Solids - Prisms, Pyramids, Cones and Cylinders with the axis		10	
inclined to one of the planes			10
Unit – 4			
Sections and Sectional Views of Right Angular Solids covering, Prism, Cylinder,			
Pyramid, Cone			10
Unit – 5			
Isometric Projections			
Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions;			
Isometric Views of lines, Planes, Simple and compound Solids; Conversion of			
Isometric Views to Orthographic Views and Vice-versa, Conventions			
Introduction to AUTOCAD			12
The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and			
Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog			
boxes and windows			

Tex	Text(T) / Reference(R) Books:		
T1	Engineering Drawing, NDBhatt, Chariot Publications		
T2	Engineering Drawing + AutoCAD, K Venugopal, V. Prabhu Raja, New Age		
	Publishers		
R1	Engineering Drawing, Agarwal & Agarwal, Tata McGraw Hill Publishers		
R2	Engineering Drawing, KLNarayana& P Kannaiah, SciTech Publishers		
R3	Engineering Graphics for Degree, KC John, PHI Publishers		
R4	Engineering Graphics, PI Varghese, McGrawHill Publishers		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Construct Polygons using general methods, inscribe and describe polygons on		
	circles,draw curves (parabola, ellipse and hyperbola, cycloids, involutes) by		
	general methods		
CO2	Read, Interpret and Construct plain scales, diagonal scales and Vernier scales		
CO3	Draw orthographic projections of points, lines, Planes & Solids inclined to one		
	reference plane and apply these concepts to solve practical problems related to		
	engineering		
CO4	Draw sections and sectional views of Solids		
CO5	Draw isometric view of lines, plane figures and simple solids, Convert given		
	isometric views into orthographic views, and apply these concepts to solve		
	practical problems related to engineering		
CO6	Draw objects using draw and modify toolbars of AutoCAD		

ENGINEERING PHYSICS LABORATORY			
Subject Code	18ITPHL1050	IA Marks	15
Number of Practice Hours/Week	3(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03
~			

Credits – 1.5

List of Experiments

Exercise 1 Study the atomic levels in Neon- Argon gases-Franck- Hertz experiment.

Exercise 2 Determine the resistivity of wire using four probe methods.

Exercise 3 Determine the Boltzmann constant using PN junction diode.

Exercise 4 Determine the Energy band gap of P-N junction diode.

Exercise 5 Determine the Hall coefficient-Hall effect.

Exercise 6 Study the spectral response of photo diode-Planck's constant.

Exercise 7 Draw the LED current-voltage characteristics.

Exercise 8 Draw the diode laser (LD) current-voltage characteristics. $\sqrt{s(s-a)(s-b)(s-c)}$

Exercise 9 Draw the Photo diode current-voltage characteristics.

Exercise 10 Measure the current-voltage characteristics of a solar cell (Photovoltaic cell) at differentlight intensities.

Cour	Course Outcomes: On completion of this course, students can		
CO1	Understand the existence of the energy levels in gases		
CO2	Study the resistivity variation with temperature in conductor		
CO3	Determine the energy band gap of semiconductor diode		
CO4	Understand the phenomenon of Hall Effect		
CO5	Understand the interaction of the light with semiconductor		
CO6	Study the characteristic curves of the LEDs, Laser diode & Solar cells		

PROGRAMMING FOR PROBLEM SOLVING LAB			
(Comr	(Common for all branches)		
Subject Code	18CMCSL1060	IA Marks	15
Number of Practice Hours/Week 4(P) Exam Marks		Exam Marks	35
Total Number of Practice Hours	48	Exam Hours	03
Credits - 02			

List of Experiments Exercise 1 (Familiarization with programming environment)

- a) Familiarization of CODE BLOCKS C++ Editor to edit, compile, execute, test anddebugging C programs.
- b) Familiarization of RAPTOR Tool to draw flow charts and understand flow of control.
- c) Acquittance with basic LINUX commands.

Exercise 2 (Simple computational problems using arithmetic expressions)

- a) Write a C Program to display real number with 2 decimal places.
- b) Write a C Program to convert Celsius to Fahrenheit and vice versa.
- where $s = \frac{a+b+c}{2}$ Write a C Program to calculate the area of triangle using the formulaarea =
- d) Write a C program to find the largest of three numbers using ternary operator.
- e) Write a C Program to swap two numbers without using a temporary variable.

Exercise 3 (Problems involving if-then-else structures)

- a) Write a C Program to check whether a given number is even or odd using bitwiseoperator, shift operator and arithmetic operator.
- b) Write a C program to find the roots of a quadratic equation.
- c) Write a C Program to display grade based on 6 subject marks using if...else...if ladder.
- d) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then
- e) prints the result using switch control statement. (Consider the operators +, -, *, /, %) **Exercise 4 (Iterative problems)**
- a) Write a C Program to count number of 0's and 1's in a binary representation of a givennumber.
- b) Write a C program to generate all the prime numbers between two numbers supplied by the user.
- c) Write a C Program to print the multiplication table corresponding to number supplied input.

Exercise 5 (Iterative problems)

- a) Write a C Program to Find Whether the Given Number is
- i) Armstrong Number ii) Palindrome Number
- b) Write a C Program to print sum of digits of a given number

Exercise 6 (Series examples)

- a) Write a C Program to calculate sum of following series
 - b) 1+2+3+.... n
- b)1+1/2+1/3+....+1/n
- c)1+ $x+x^2+x^3$+ x^n

Exercise 7 (1D Array manipulation)

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to search an element in an array (linear search).
 - c) Write a C Program to print the following pattern using a character array

S

SA

SAS

SASI

Exercise 8 (Matrix problems, String operations)

- a) Write a C program to add two matrices.
- b) Write a C program to multiply two matrices if they are compatible or print an errormessage "incompatible matrix sizes" otherwise.
- c) Write a C program to check given matrix is symmetric or not.
- d) Implement the following string operations with and without library functions.
 - i) Copy
- ii) concatenate
- iii) length

iv) compare

Exercise 9 (Simple functions)

- a) Write a C Program demonstrating the following function types
- i. With arguments and with return value.
- ii. With arguments and without return value
- iii. Without arguments and without return value.
- iv. Without arguments and with return value.
- b) Write a C Program illustrating call by reference

Exercise 10 (Recursive functions)

Write a C Program illustrating the following with Recursion without Recursion

- a) Factorial
- b) GCD
- c) Power
- d) Fibonacci

Exercise 11(Pointers and structures)

- a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.
- b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Note: Understand the difference between the above two programs.

c) Write a C Program to read and print student details using structures.

Exercise 12 (File operations)

- a) Write a C program to open a file and to print its contents on screen.
- b) Write a C program to copy files
- c) Write a C program merges two files onto a new file.
- d) Write a C program to delete a file.

Cour	Course Outcomes: On completion of this course, students can		
CO1	Attain knowledge on using CODE BLOCKS and RAPTOR tools in solving problems		
CO2	Examine and analyze alternative solutions to a problem		
CO3	Design asolution to a problem using problem decomposition and step-wise refinement		
CO4	Demonstrate conversion of iterative functions to recursive and vice-versa		
CO5	Demonstrate usage of arrays, structures and unions		
CO6	Demonstrate reading from and writing to files along with simple file operations		

WORKSHOP/MANUFACTURING PRACTICE			
Subject Code	18CMMEL1070	IA Marks	15
Number of Practice Hours/Week	3(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03

Credits - 1.5

List of Experiments

Exercise 1 (lectures & Videos)

- a) Manufacturing Methods: casting, forming, machining, Joining, Advanced methods
- b) CNC machining, Additive manufacturing

Exercise 2 (lectures & Videos)

- a) Fitting operations & power tools
- b) Electrical & Electronics
- c) Carpentry

Exercise 3(lectures & Videos)

- a) Plastic molding, glass cutting
- b) Metal casting
- c) Welding (arc welding & gas welding), brazing

Exercise 4(Black smithy)

- a) S-Hook
- b) Square Rod to Round Rod

Exercise 4(Carpentry)

- a) T-Lap Joint
- b) Cross Lap Joint

Exercise 6(Foundry)

- a) Mold for solid
- b) Mold for split pattern

Exercise 7(Fitting)

- a) Square fitting
- b) V-fitting

Exercise 8(Welding)

- a) Butt Joint
- b) Lap Joint

Exercise 9(Machine Tools)

- a) Turning
- b) Knurling

Exercise 10(Plastic Molding)

c) Key Chain Molding

Cour	Course Outcomes: On completion of this course, students can		
CO1	CO1 Make use of basic carpentry joints to make furniture		
CO2	Fabricate mechanical engineering assemblies using fitting joints		
CO3	Produce various machine components by using foundry, black smithy, machining and plastic molding techniques		

ENVIRONMENTAL SCIENCE			
Subject Code 18CMCHN1080 IA Marks		30	
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 00		•
Unit -1 (MULTIDISCIPLINARY	NATURE OF	ENVIRONMENTAL	Hours
STUDIES)			
Environment			
Definition, Introduction, Scope and Imp	ortance, Global er	vironmentalchallenges,	
global warming & climate change, A	cid rains, ozone l	ayer depletion, Carbon	
credits, Sustainability, Stockholm & Ric	Summit, Populati	on growth & explosion,	
Role of Information Technology in Envir	ronment and humar	n health.	10
Ecosystem			10
Concept, Structure and function, Produc	cers, consumers an	d decomposers, Energy	
flow in the ecosystem, Ecological su			
ecological pyramids, Introduction, typ	es, characteristic	features, structure and	
function of the different ecosystems			
Unit -2 (RESOURCES)			
Natural Resources			
Renewable and non-renewable resou	irces, Natural res	sources and associated	
problems			
Forest resources			
Use and over exploitation, deforestation, Timber extraction, Mining, dams and			
other effects on forest and tribal people			
Water resources			
Use and over utilization of surface and ground water, Floods, drought, conflicts			
over water, dams – benefits and problen	ns		
Mineral resources			10
Use and exploitation, environmental eff	fects of extracting a	and using mineral	12
resources.			
Food resources			
World food problems, changes caused by agriculture and overgrazing, effects of			
modern agriculture, fertilizer-pesticide problems, water logging, salinity.			
Energy resources			
Growing energy needs, renewable and non-renewable energy sources use of			
alternate energy sources.			
Role of an individual in conservation of natural resources. Equitable use of			
resources for sustainable lifestyles.	CONGERNATION	AT\	
Unit – 3 (BIODIVERSITY AND ITS		<u> </u>	0.5
Introduction, Definition, genetic,	species and	ecosystem diversity,	06

Biogeographicalclassification of India, Value of biodiversity: consumptive use, productive use, social, ethical, aestheticand option values, Biodiversity at global, National and local levels. India as a mega-diversity nation, Hot-spots ofbiodiversity, Threats to biodiversity: habitat loss, Endangered andendemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Unit – 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds Study of simple ecosystems: pond, river, hill slopes, etc.		
National and local levels. India as a mega-diversity nation, Hot-spots ofbiodiversity, Threats to biodiversity: habitat loss, Endangered andendemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Unit - 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit - 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Biogeographical classification of India, Value of biodiversity: consumptive use,	
ofbiodiversity, Threats to biodiversity: habitat loss, Endangered andendemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Unit – 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds		
species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Unit – 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds		
Unit – 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds		
Unit – 4 Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	•	
Environmental Pollution Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit - 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	biodiversity.	
Definition, Cause, effects and control measures of :Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Unit – 4	
pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Environmental Pollution	
Nuclear hazards Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Definition, Cause, effects and control measures of :Air pollution, Water	
Solid waste Management Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution,	
Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies. Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Nuclear hazards	12
Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Solid waste Management	
Unit – 5 Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Causes, effects and control measures of urban and industrial wastes, Role of an	
Social Issuesand the Environment Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	individual in prevention of pollution, Pollution case studies.	
Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Unit – 5	
watershed management, Resettlement and rehabilitation of people its problems and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Social Issuesand the Environment	
and concerns. Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Urban problems related to energy, Water conservation, rain water harvesting,	
Environment Protection Acts Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	watershed management, Resettlement and rehabilitation of people its problems	
Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	and concerns.	
Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Environment Protection Acts	
in enforcement of environmental legislation, Public awareness. Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Air (Prevention and Control of Pollution) Act, Water (Prevention and control of	
Field work Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved	4.0
Visit to a local area to document environmental assets: River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	in enforcement of environmental legislation, Public awareness.	10
River/forest/grassland/hill/mountain Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Field work	
Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	Visit to a local area to document environmental assets:	
Visit to a local polluted site: Urban/Rural/industrial/Agricultural Study of common plants, insects, birds	River/forest/grassland/hill/mountain	
Study of common plants, insects, birds		

Tex	ct(T) / Reference(R) Books:
T1	Environmental Studies, E Bharucha, University Publishing Company, New Delhi, 2003
T2	Environmental Science and Engineering, JG Henry and GW Heinke, 2 nd edition, Prentice Hall of India, New Delhi, 2004
Т3	Introduction to Environmental Engineering and Science, G M Masters, 2 nd edition, Prentice Hall of India, New Delhi, 2004
R1	Environmental Studies, Deeshita Dave & P Udaya Bhaskar, Cengage Learning
R2	Environmental Studies, KVSGMurali Krishna, VGS Publishers, Vijayawada
R3	Environmental Studies, PNPaliniswamy, P Manikandan, A Geeta and K Manjula Rani, Pearson Education

Cour	Course Outcomes: On completion of this course, students can	
CO1	Explain importance of Environmental studies and the measures to be taken to overcome global environmental challenges	
CO2	Describe the concept of ecosystem and its diversity	
CO3	Describe knowledge on natural resources	
CO4	Explain concept of biodiversity	
CO5	Explain knowledge on environmental pollution	
CO6	Debate knowledge on environmental legislation and global treaties	

Department of Information Technology Detailed Syllabus

II SEMESTER (I-II)

TEO	CHNICAL ENGLISH		
Subject Code	18CMEGT2010	IA Marks	30
Number of Lecture Hours/ Week	2(T)	Exam Marks	70
Total Number of Lecture Hours	30	Exams Hours	03
Cr	edits -02		
Unit-1 (Principles of Scientific Voc	cabulary)		Hours
short and simple words, compact su	bstitutes for wordy phrases	, redundant words	
and expressions, Avoid hackneyed	and stilted phrases, verbo	sity and incorrect	4.0
use of words, role of roots in word	d building, prefixes and s	uffixes, confusing	10
wordsand expressions. 1-4 chapters	of Karmayogi non-detail te	xt book (N1)	
Unit-2 (Writing Skills)		I	
Distinguishing between academic ar	nd personal styles of writin	g, use of clauses	
in technical phrases and sentences, Techniques of Sentence and paragraph			
writing, Measuring the clarity of a text through Fog Index or Clarity Index			10
5-8 chapters of Karmayogi non-detail text book (N1)			
Unit-3 (Common Errors in Writing)			
Subject-verb agreement, concord of nouns, pronouns and possessive adjectives,			
Common errors in the use of articles, prepositions, adjectives and adverbs,			
Punctuation, Technical Guidelines for Communication, Avoiding the pitfalls			10
9-12 chapters of Karmayogi non-detail text book (N1)			
Unit-4 (Nature and Style of Sensib	le Technical Writing)		
Academic Writing Process, Describing, processes and products,			
Defining, Classifying, Effective use of charts, graphs, and tables 13-16 chapters			10
of Karmayogi non-detail text book (N1)			
Unit-5 (Report writing and Letter writing)			
Writing Technical Reports, Précis writing, Letter Writing, Essay writing 17-20			10
chapters of Karmayogi non-detail te	xt book (N1)		10

	Text(T) / Reference(R) Books:
T1	Effective Technical Communication by Barun K Mitra, Oxford University Publication
N1	Karmayogi: A Biography of E Sreedharan, M S Ashokan
R1	Communication Skills, Sanjay Kumar & PushpaLatha, OUP
R2	Study Writing, Liz Hamp-Lyons and Ben Heasly, Cambridge University Press
R3	Remedial English Grammar, F T Wood, Macmillan 2007
R4	Practical English Usage, Michael Swan, Oxford University Press
R5	English Collocations in Use, Michael McCarthy & Felicity O'Dell
R6	Effective Technical Communication, Arsahf Rizvi
R 7	Essential English Grammar, Raymond Murphy, CUP, 2017

Cour	Course Outcomes: On completion of this course, students can	
CO1	Use scientific vocabulary confidently	
CO2	Apply basic principles of writing clear sentences and paragraphs	
CO3	Writeerror free simple technical passages	
CO4	Frame sentences corresponding to different writing styles	
CO5	Confidently write clear and coherent letters and technical reports	
CO6	Convert inspirations in the form of achievements and values upheld by renowned technocrats to write-ups	

ENGINEERING MATHEMATICS-II			
Subject Code 18CMMAT2020 IA Marks			30
Number of Lecture Hours/Week 3(L)+1(T) Exam Marks		70	
Total Number of Lecture Hours 50 Exam Hours		Exam Hours	03
Credits –	04		•
Unit -1 (Linear Algebra)			Hours
Rank of a matrix by elementary	transformations, solution of	system of linear	
equations: Gauss-elimination meth	od, Gauss-Jordan method, Ja	cobi method and	
Gauss-Seidel method, Eigen valu	ues and Eigen vectors, Prop	perties of Eigen	10
values and Eigen vectors, Linear	transformation, Diagonaliza	tion of a square	10
matrix. Cayley-Hamilton theorem	(without proof), Reduction of	Quadratic form	
to Canonical form.			
Unit -2 (Laplace Transforms)			
Laplace transforms of standard fur	nctions, shifting theorems, Tra	ansforms of	
derivatives and integrals, Unit step	function, Dirac's delta funct	ion Inverse	
Laplace transforms, Convolution	theorem (without proof) A	pplications:	10
Solving ordinary differential equation	ions (initial value problems)		10
using Laplace transforms			
Unit – 3 (Numerical Methods-I)			
Numerical solution of algebraic a	and transcendental equations	S	
Regula-Falsi Method and Newton-	Raphson method		
Finite differences			
Error functions, Forward, backward and central differences, Newton's forward			10
and backward interpolation formulae. Gauss's forward and backward			
interpolation formulae, Lagrange's interpolation formula (all formulae without			
proof)			
Unit – 4 (Numerical Methods-II)			
Numerical integration			
Trapezoidal rule - Simpson's (1/3) ^t	and $(3/8)$ th rules.		
Numerical solutions of ordinary differential equations			10
Taylors series method, Picard's	method, Euler's method,	Modified Euler's	
method, Runge-Kutta method			
Unit – 5 (Fourier Series and Transforms)			
Fourier Series			
Periodic functions, Dirichlet's cond	<u>-</u>		
with period 2π and with arbitrary p		nd odd	
functions, Half range Fourier Series.			10
Fourier Transforms			
Infinite Fourier transforms, Fourier sine and cosine transforms, Inverse Fourier			
transforms.			

	Text(T) / Reference(R) Books:		
T1	Γ1 Higher Engineering Mathematics, B S Grewal, 44 th Edition, Khanna publishers, 2016		
T2	Γ2 Advanced Engineering Mathematics, Kreyszig, 9th Edition, Wiley, 2013		
R1	Higher Engineering Mathematics, B V Ramana, Tata McGrawHill, 2006		
R2	A text book of Engineering Mathematics, N P Bali and Manish Goyal, 7th edition,		
	Laxmi publications		
R3	Higher Engineering Mathematics, H. K Dass and Er. Rajnish Verma, 1st edition, S.		
	Chand publishing, 2011		
R4	Engineering Mathematics, Volume II, Dr.KVNageswara Reddy and		
	Dr.BRamaBhupal Reddy, Scitech Publications, 2017		

Cour	se Outcomes: On completion of this course, students can
CO1	Solve system of linear equations and find eigen values and eigen vectors of a matrix
CO2	Solve initial value problems by using Laplace transforms
CO3	Find the solution of algebraic/transcendental equations and also interpolate the functions
CO4	Evaluate numerical integration and to solve ordinary differential equations by using numerical methods
CO5	Find Fourier series of a periodic function and to determine the Fourier transform of a function

ENGINEERING CHEMISTRY			
Subject Code	18CMCHT2030	IA Marks	30
Number of Lecture Hours/Week	3(T) + 1(T)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 04		<u> </u>
Unit -1			Hours
Periodic Properties Effective nuclear charge of chlor variations of s, p, d and f orbit electronic configurations, atomic affinity and electro negativity, or and geometries, hard soft acids and	cal energies of atoms in and ionic sizes, ionization states, coordination bases.	the periodic table, n energies, electron	10
Unit -2 (Use of Free Energy in Ch	nemical Equilibria)		
Thermodynamic functions State and Path functions, First Helmholtz Equation, concept of ent Electro chemistry Introduction, electrode potential, electrodes, Nernst equation and app Water chemistry Surface and subsurface water qua salts, chloride content, break point of Corrosion Wet chemical theory, control me Sacrificial anodic and impressed cu	standard electrodes: Hydolications. ality parameters: turbidity, chlorination. thods: proper designing, of	rogen and Calomel pH, total dissolved	10
Unit – 3 Stereochemistry Principles of stereochemistry, reporganic compounds, geometrical arenantiomers. Organic Reactions and Synthesis Introduction to reactions involving Addition, Free radical, Elimination involved), Synthesis of aspirin drug Unit – 4 Atomic Melecular Structure and	of a Drug Molecule ng Substitution: SN ¹ & SN n: E1 & E2 with examples g molecule.	tion and symmetry, 12 with mechanism,	10
Atomic, Molecular Structure and Schrodinger equation. Particle in conjugated molecules. Nanoparticles Introduction, preparation method method, properties and applications	n a box solution and the s: Sol-gel method, Che		10

Surface properties

Determination of surface tension and viscosity of liquids.

Ceramics

Classification, examples and applications.

Crystal field theory and the energy level diagrams for transition metal ions.

Unit – 5

Spectroscopic Techniques

Regions of electromagnetic spectrum, Principles of vibrational and rotational spectroscopy, Vibrational and rotational spectroscopy of diatomic molecules: Rigid diatomic molecules, selection rule, simple Harmonic Oscillator, diatomic vibrating rotator, Nuclear magnetic resonance, Principle and Instrumentation, Principles of chromatography, TLC & Paper.

10

Tex	Text(T) / Reference(R) Books:	
T1	Stereochemistry of Carbon Compounds, Ernest Eliel, McGraw Hill Education	
T2	Fundamentals of Molecular Spectroscopy, C N Banwell	
T3	Concise Inorganic Chemistry, J.D.Lee, 5th Edition; Wiley India	
T4	Engineering Chemistry – Fundamentals and applications, Shikha Agarwal, CUP	
T5	Organic Chemistry: Structure and Function, K P C Volhardt and N E Schore, 5th Edition	
T6	Engineering Chemistry, Jain & Jain, Dhanpat Rai Publishing Company	
R1	Engineering Chemistry (NPTEL Webbook), B L Tembe, Kamaluddin and MSKrishnan	
R2	Physical Chemistry, P. W. Atkins	
R3	Physical Chemistry, Glasstone S	
R4	Advanced Inorganic Chemistry, Wilkinson G and Cotton FA	

Cour	Course Outcomes: On completion of this course, students can		
CO1	Rationalize periodic properties like ionization potential, electro negativity and oxidation states		
CO2	Describe the nature and working of various electrodes		
CO3	Analyze bulk properties and processes using thermodynamic considerations		
CO4	Synthesize organic molecules using different types of chemical reactions		
CO5	CO5 Explain the concepts of atomic and molecular orbitals		
CO6 Gain knowledge on spectroscopic techniques and the ranges of the electromagnetic spectrum used for exciting different molecular energy levels			

BASIC E	LECTRICAL ENGINE	ERING		
Subject Code	18CMEET2040	IA Marks		30
Number of Lecture Hours/week	er of Lecture Hours/week 3(L) +1(T) Exam Marks			70
Total Number of Lecture Hours	60	Exam Hours		03
	Credits – 04			
Unit -1			Но	urs
DC Circuits:				
Electrical circuit elements (R, L and	d C), voltage and current	sources, Kirchhoff's		
current and voltage laws, analy	sis of simple circuits	with dc excitation.	1	2
Superposition, Thevenin and Nort	on Theorems (Simple n	umerical problems).		
Time-domain analysis of first-order	RL and RC circuits.			
Unit – 2				
AC Circuits:				
Representation of sinusoidal wa	aveforms, peak and r	ms values, phasor		
representation, real power, reacti	ive power, apparent po	wer, power factor.		
Analysis of single-phase ac circu	uits consisting of R, L,	C, RL, RC, RLC	1	2
combinations (series and parallel).	•	se balanced circuits,		
voltage and current relations in star	and delta connections.			
Unit – 3				
Transformers				
Magnetic materials, BH characteristics, ideal and practical transformer,			_	
equivalent circuit, losses in tran-		•	1	2
efficiency. Auto transformer and the	ree-phase transformer cor	nnections.		
Unit – 4				
Electrical Machines: AC machine	es			
Generation of rotating magnetic fie		_		
phase induction motor, significant				
components and efficiency, starti	ng and speed control o	of induction motor.	1	4
Single phase induction motor. (Construction and worki	ng of synchronous		
generators. DC machines				
Construction, working, torque- speed characteristics and speed control of dc				
shunt motor.				
Unit – 5				
Power Converters and Electrical	Installations			
DC Buck and boost converters, of	•			
phase voltage source inverters. C	Classification of batteries	s and Low Voltage	1	0
switch gear.				

Tex	Text(T) / Reference(R) Books:		
T1	Electrical and Electronics Technology, E Hughes, Pearson, 2010		
T2	Basic Electrical Engineering, DC Kulshreshtha, McGraw Hill, 2009		
T3	Basic Electrical Engineering, DP Kothari, IJ Nagrath		
T4	Basic Electrical Engineering, J P Tewari, New Age International Publishers, 2003		
R1	Power Electronics, M D Singh, 2 nd Edition		
R2	Battery Energy Storage for Smart Grid Applications, Eurobat, 2013		
R3	Fundamentals of Electrical Engineering, L S Bobrow, OUP, 1996		
R4	Electrical Engineering Fundamentals, V D Toro, PHI, 1989		
R5	Understanding Batteries, RM Dell, DAJ Rand, 2001		
R6	Protection and Switchgear, Bhavesh Bhalja, RP Maheshwari, Nilesh G Chothani, 5th		
	impression, OUP, 2014		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Analyze DC circuits by using KCL, KVL and Network theorems		
CO2	Analyze AC circuits		
CO3	Explain the operation and compute performance of transformer		
CO4	Explain the construction and working of rotating electrical machines		
CO5	CO5 Describe DC-DC and DC-AC converters		
CO6	Explain about types of LV switch gear and types of batteries		

ENGLISH & COMMUNICATION SKILLS LABORATORY			
Subject Code	18CMEGL2050	IA Marks	15
Number of Practice Hours/Week	2(P)	Exam Marks	35
Total Number of Practice Hours	24	Exam Hours	03

Credits – 1

List of Experiments

Exercise 1

Listening Comprehension.

Exercise 2

Pronunciation, Stress, Intonation & Rhythm.

Exercise 3

Common Everyday Situations: Conversations & Dialogues.

Exercise 4

Communication at Workplace: Job Application letter, Email & Resume.

Exercise 5

Interpersonal Communication Skills.

Exercise 6

Formal Presentations.

Lea	Learning Resources:		
R1	Interact – English Lab Manual for Undergraduate Students by Orient BlackSwan		
R2	Ted Talks, Interviews with Achievers and select movies, https://www.ted.com/talk		
R3	Toastmaster's speeches and table topics		
R4	Book Reviews and movie reviews		
R5	Exercises in Spoken English Parts: I-III, CIEFL, Hyderabad		
R6	Oxford Guide to Effective Writing and Speaking by John Seely		

Course Outcomes: On completion of this course, students can	
CO1	Improve listening comprehension
CO2	Pronounce words and sentences correctly
CO3	Dialogue with others
CO4	Upgrade interpersonal communication skills
CO5	Present ideas/concepts to audience

ENGINEERING CHEMISTRY LABORATORY			
Subject Code	18CMCHL2060	IA Marks	15
Number of Practice Hours/Week	3(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03

Credits – 1.5

List of Experiments

(Any 10 experiments must be conducted)

Exercise 1

Determination of surface tension

Exercise 2

Determination of viscosity of a liquid by Ostwald viscometer

Exercise 3

Thin layer chromatography

Exercise 4

Determination of chloride content of water

Exercise 5

Determination Hardness of water by EDTA

Exercise 6

Determination of the rate constant of first order reaction (Ester hydrolysis)

Exercise 7

Determination of strength of strong acid using conductometric titration.

Exercise 8

Determination of strength of weak acid using conductometric titration.

Exercise 9

Determination of Ferrous iron using potentiometer.

Exercise 10

Synthesis of a drug – Aspirin

Exercise 11

Determination of the partition coefficient of a substance between two immiscible liquids

Exercise 12

Determination of strength of acetic acid using charcoal adsorption.

Exercise 13

Preparation of lattice structure and determination of atomic packing factor.

Exercise 14

Chemical oscillations- Iodine clock reaction

Exercise 15

Synthesis of Phenol formaldehyde resin.

Exercise 16

Saponification of oil

Cours	Course Outcomes: On completion of this course, students can	
CO1	Measure molecular properties like surface tension and viscosity	
CO2	Determine chloride content of water of given water sample	
CO3	Synthesize a drug	
CO4	Determine rate constant as a function of time	
CO5	Determine strength of acids using conductivity meter	
CO6	Determine amount of Fe (II) using potentiometer	

BASIC ELECTRICAL ENGINEERING LAB			
Subject Code	18CMEEL2070	IA Marks	15
Number of Practice Hours/Week	2(P)	Exam Marks	35
Total Number of Practice Hours	24	Exam Hours	03

Credits – 01

List of Experiments

(Any 12 experiments must be conducted)

Exercise 1

Basic safety precautions. Introduction and use of measuring instruments – voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.

Exercise 2

Measuring the steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in voltage (transient may be observed on a storageoscilloscope).

Exercise 3

Series and Parallel resonance of RL and RC circuits.

Exercise 4

No-load and load test on single phase Transformer (measurement of primaryand secondary voltages and currents, and power).

Exercise 5

Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phasecurrents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.

Exercise 6

Torque Speed Characteristic of dc shuntmotor.

Exercise 7

Break test on single phase induction motor.

Exercise 8

Field excitation control of Synchronous Machine.

Exercise 9

OC & SC tests on a single-phase transformer.

Exercise 10

characteristics of PN junction diode.

Exercise 11

Half and Full wave rectifier with and without filter.

Exercise 12

Demonstration of

- a) dc-dc converters
- b) dc-ac converters PWM waveform
- c) the use of dc-ac converter for speed control of an induction motor
- d) Components of LTswitchgear.

Cour	Course Outcomes: On completion of this course, students can		
CO1	Know the importance of measuring instruments		
CO2	Determine the response and resonance of given RL, RC and RLC circuits		
CO3	Determine the voltage, current and performance characteristics of a single-phasetransformer		
CO4	Determine the speed torque characteristics of dc shunt motor		
CO5	Determine the breakdown voltage of PN junction diode		
CO6	Determine the ripple factor for half wave and full wave rectifier with and without filter		

(CONSTITUTION OF INDIA, PRO	OFESSIONAL ETHIC	S & HUMAN RIG	HTS
	(0	Common to all)		
Sub	oject Code	18CMMSN2080	IA Marks	30
Nu	mber of Lecture Hours/Week	3(L)	Exam Marks	70
Tot	al Number of Lecture Hours	50	Exam Hours	03
		Credits – 00		
Uni	t -1			Hours
Less	on: Introduction to the Constit	ution of India, The	Making of the	
Cons	stitutionand Salient features of the C	Constitution.		10
Prea	mble to the Indian Constitution Fun	damental Rights & its li	mitations.	10
Uni	t -2		1	
Less	on: Directive Principles of State Po	olicy & Relevance of Di	rective	
Princ	ciplesState Policy Fundamental Dut	ies.		4.0
Unic	on Executives – President, Prime	Minister Parliament St	upreme Court of	10
India	1.			
Uni	t-3			
Less	on: State Executives - Governor	, Chief Minister, State	Legislature High	
	rt of State.			
Elec	toral Process in India, Amendment	Procedures, 42nd, 44th	, 74th, 76th, 86th	10
	st Amendments.	, ,	, ,	
Uni	t-4			
Less	on: Special Provision for SC 8	& ST Special Provision	on for Women,	
	dren& Backward Classes Emergenc	-	ŕ	
	nan Rights –Meaning and Defin	•	ecific Themes in	10
	Human Rights- Working of National Human Rights Commission in India			
Pow	Powers and functions of Municipalities, Panchayats and Co-Operative Societies.			
	t - 5		L	
Less	on: Scope & Aims of Engineer	ing Ethics, Responsible	ility of Engineers	
	ediments to Responsibility.	<i>C</i> , 1	, .	
-	s, Safety and liability of Enginee	rs, Honesty, Integrity	& Reliability in	10
	Engineering.			
	t(T) / Reference(R) Books:			
T1	Introduction to the Constitution	on India, Durga Das I	Basu, (Students Edn	.)
	Prentice -Hall EEE, 19th / 20th E	_	, ,	,
T2	Engineering Ethics, Charles E. 1	Haries, Michael S Prito	chard and Michael	J.
	Robins Thompson Asia, 2003-08-			
R1	An Introduction to Constitution of	f India, M.V.Pylee, Vika	as Publishing, 2002.	
R2	Engineering Ethics, M.Govindara	•		ce –Hall
	of India Pvt. Ltd. New Delhi, 200	4		
R3	Introduction to the Constitution of Ltd., New Delhi, 2011.	of India, Brij Kishore Sh	narma, PHI Learning	g Pvt.
R4	Latest Publications of Indian Insti	tute of Human Rights N	New Delhi	
	I wonout on or middle mote	Tatto of Hairian Rights, 1		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Have general knowledge and legal literacy and thereby to take up competitive		
	examinations.		
CO2	Understand state and central policies, fundamental duties		
CO3	Understand Electoral Process, special provisions		
CO4	Understand powers and functions of Municipalities, Panchayats and Co-operative		
	Societies		
CO5	Understand Engineering ethics and responsibilities of Engineers		
CO6	Understand Engineering Integrity & Reliability		

Department of Information Technology Detailed Syllabus

III SEMESTER (II-I)

 σ

Engineering Mathematics – III			
	nmon to all the branches	IA Maulys	20
Subject Code	18CMMAT3010	IA Marks	30
Number of Lecture Hours/Week	3(L) + 1(T)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
TT 1. d	Credits – 04		**
Unit -1			Hours
Function of a complex variable Introduction –continuity –different –Riemann equations in Cartesian conjugate harmonic functions – Mi	and polar coordinates. Har	•	08
Unit -2			
Integration and series expansions Complex integration: Line integral integral formula, generalized integra Radius of convergence – expansion Unit – 3	l – Cauchy's integral theore al formula (all without proo	fs)	10
Singularities and Residue Theore	m		
Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semicircle, Indenting contours having poles on real axis.		10	
Unit – 4			
Discrete Random variables and Introduction-Random variables- Discrete distributions: and their fitting to data. Continuous Random variable and Introduction-Continuous Random Continuous distribution: Uniform, approximation to Binomial distribu	screte Random Variable-Di Binomial, Poisson and Geo distributions: Variable-Distribution func Exponential and Normal dis	metricdistributions tion- Expectation-	10
Unit – 5			
Test of Significance: Introduction - Population and samples- Sampling distribution of means (- known) t-distribution- Sampling distribution of means(-unknown), chi-square and F- test Hypothesis-Null and Alternative Hypothesis- Type I and Type II errors –Level of significance - One tail and two-tail tests- Tests concerning one mean and proportion, two means- Proportions and their differences - ANOVA for one – way and two – way classified data		12	

Text	t(T) / Reference(R) Books:
T1	Higher Engineering Mathematics, B.S. Grewal, Khanna publishers, 44th edition, 2016.
T2	Advanced Engineering Mathematics I, Erwin Kreyszig, Wiley, 9th Edition, 2013.
R1	Higher Engineering Mathematics, B.V. Ramana, Tata Mc Graw-Hill, 2006
R2	A text book of Engineering mathematics, N.P.Bali and Manish Goyal, Laxmi publications, 7th Edition.
R3	Higher Engineering Mathematics, H.K. Dass and Er. RajnishVerma, S.Chand publishing, 1st edition, 2011.
R4	Probability and Statistics for Engineers, Dr. B.RamaBhupal Reddy, Research IndiaPublications (DELHI), 2015.
W1	https://nptel.ac.in/courses/122107037/
W2	https://www.udemy.com/mathematics-for-engineering/

Cour	Course Outcomes: On completion of this course, students can		
CO1	Find the function of a complex variable		
CO2	Evaluate complex integration		
CO3	Expand functions using Taylor & Maclaurin's series		
CO4	Evaluate integrals using Residues		
CO5	Find the statistical parameters for distributions		
CO6	Test the hypothesis		

DIGITAL ELECTRONICS			
Subject Code	18ITECT3020	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1 (Fundamentals of Digital S	ystems and logic families)	Hours
Digital signals, digital circuits, ANI	D, OR, NOT, NAND, NO	R and Exclusive-	
OR operations, Boolean algebra, exa	imples of IC gates, number	r systems-binary,	
signed binary, octal hexadecimal n	umber, binary arithmetic,	one's and two's	12
complements arithmetic, codes,	error detecting and c	correcting codes,	12
characteristics of digital lCs, digital	logic families, TTL, Schot	tky TTL and	
CMOS logic, interfacing CMOS and			
Unit -2 (Combinational Digital Cir	cuits)		
Standard representation for logic fur	nctions, K-map representat	tion, simplification	
of logic functions using K-map, m	inimization of logical fun	ctions. Don't care	
conditions, Multiplexer, De-Multip	lexer/Decoders, Adders,	Subtractors, BCD	
arithmetic, carry look ahead adder,	serial adder, ALU, elemen	ntary ALU design,	07
popular MSI chips, digital comparate	or, parity checker/generato	r, code converters,	07
priority encoders, decoders/drivers	s for display devices,	Q-M method of	
function			
realization.			
Unit – 3 (Sequential circuits and sy	·		Т
1-bit memory, the circuit properties			
K-T and D-types flip flops, application		= =	
of shift registers, serial to parallel	-	_	
counter, sequence generator, ripp	· · · · · ·		07
counters, counters design using	ng flip flops, special	counter IC's,	
asynchronous			
sequential counters, applications of c			
Unit – 4 (A/D and D/A Converters)		OD 1.44 D/A	
Digital to analog converters: weig			
converter, specifications for D/A c			
sample and hold circuit, analog to d	•	•	
parallel comparator A/D converter			12
counting A/D converter, dual slope to frequency and voltage to			
converters,	unic conversion, specii	ications of A/D	
example of A/D converter ICs			
Unit – 5 (Semiconductor memories	and Programmable logic	c devices)	
Memory organization and operation,			
characteristics of memories, sequenti			
and write memory(RAM), content a			12
coupled device memory (CCD), com	•	•	

PLD,Programmable logic array, Programmable array logic, complex	
Programmable	
logic devices (CPLDS), Field Programmable Gate Array (FPGA).	

Text	Text(T) / Reference(R) Books:		
T1	Modern Digital Electronics, R P Jain, McGraw Hill Education, 2009.		
T2	Digital logic and Computer design, M MMano, Pearson Education India, 2016.		
Т3	Digital Design Principles & Practices, John F Wakerly, PHI/ Pearson Education Asia,3rd Ed., 2005.		
T4	Switching Theory and Logic Design, Hill and Peterson Mc-Graw Hill TMH edition.		
R1	Fundamentals of Digital Circuits, A Kumar, Prentice Hall India, 2016.		
R2	Fundamentals of Logic Design, Charles H Roth Jr, Jaico Publishers		
W1	https://www.coursera.org/learn/digital-systems		
W2	https://onlinecourses.nptel.ac.in/noc19_ee09/preview		

Cour	Course Outcomes: On completion of this course, students can		
CO1	State and explain fundamental gates in digital circuits		
CO2	Apply Boolean algebra simplification methods to build basic combinatorial circuits		
CO3	Construct the sequential circuits & systems		
CO4	Explain converters especially basic operation of A/D and D/A converters		
CO5	Describe Semiconductor memories and Programmable logic devices		

Analog Electronic Circuits			
Subject Code	18ITECT3030	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03	1	
Unit -1 (Diode Circuits)			Hours
P-N junction diode, I-V characteris	stics of a diode; review of l	nalf-wave and full-	00
wave rectifiers, Zener diodes, clam	ping and clipping circuits		08
Unit -2 (BJT circuits)		,	
Structure and I-V characteristics of	of a BJT; BJT as a switch.	BJT as an amplifier:	
small-signal model, biasing circuits	s, current mirror; common-e	mitter, common- base	
and common collector amplifiers;	Small signal equivalent c	ircuits, high-	12
frequency equivalent circuits			
Unit – 3 (MOSFET Circuits)			
MOSFET structure and I-V charac	cteristics. MOSFET as a sw	ritch. MOSFET as an	
amplifier: small-signal model and	biasing circuits, common-	source, common-gate	
and common-drain amplifiers; small signal equivalent circuits - gain, input and			10
output impedances, transconductan	ce, high frequency equivale	nt circuit.	
Unit – 4 (Differential, multi-stage and operational amplifiers)			
Differential amplifier; power an			
internal structure of an operational			
amp (Output offset voltage, input l		=	08
gain bandwidth product)	-		
Unit – 5 (Applications of op-amp))		
Linear applications:			
Idealized analysis of op-amp ci	ircuits. Inverting and nor	n-inverting amplifier,	
differential amplifier, instrumentat	tion amplifier, integrator, a	ctive filter using op-	
amp, voltage regulator, oscillators			
Conversion.		,	12
Nonlinear applications:			
Hysteretic Comparator, Zero Cross	sing Detector, Square-wave	and triangular-wave	
generators. Precision rectifier, peak	detector. Monoshot.	-	
Text(T) / Reference(R) Books:			
T1 Microelectronic Circuits, A	C Codro and V C Cmith OI	D 1009	

Text	Text(T) / Reference(R) Books:		
T1	Microelectronic Circuits, A S Sedra and K C Smith, OUP, 1998.		
T2	Introduction to Operational Amplifier theory and applications, J V Wait, L P		
	Huelsmanand G A Korn, McGraw Hill, 1992.		
R1	Microelectronics, J Millman and A Grabel, McGraw Hill Education, 1988.		
R2	The Art of Electronics, P Horowitz and W Hill, Cambridge University Press, 1989		
R3	Analysis and Design of Analog Integrated Circuits, P R Gray, R G Meyer and S		
	Lewis, John Wiley & Sons, 2001.		
W1	https://onlinecourses.nptel.ac.in/noc18_ee45/preview		
W2	https://swayam.gov.in/course/3835-analog-circuits		

Cour	Course Outcomes: On completion of this course, students can	
CO1	Apply the characteristics of Diodes to various applications	
CO2	Distinguish the characteristics of transistors.	
CO3	Design and analyze various rectifier and amplifier circuits	
CO4	Design sinusoidal and non-sinusoidal oscillators.	
CO5	Design OP-AMP based circuits	

DISCRETE MATHEMATICS			
Subject Code	18ITITT3040	IA Marks	30
Number of Lecture Hours/Week	3(L) + 1(T)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 04		
Unit -1: Propositions and Predicate	es		Hours
Propositional Logic (TB1:001-012)			
Propositions, Variables, Connective	es, Truth tables, Converse, Con	ntrapositive,	
Inverse of a conditional statement, C	ompound Propositions, Precedence	e rules.	
Applications of Propositions Logic	(TB1:016-022)		
Propositional Equivalences (TB1:0	25-034)		
Logical Equivalences, Tautology	y, Contradiction, De Morga	ın's Law,	
Satisfiability, Applications of Satisf	fiability, Complexity in solving s	satisfiability	
problems.			
Predicates and Quantifiers (TB1:03	36-051)		
Predicates, Quantifiers, Binding	Variables, Logical equivalences	s involving	
quantifiers, Negating Quantified Ex	xpressions (De Morgan's Law),	Translating	10
English into Logical Expressions, Us	sing quantifiers in System Specific	eations.	
Nested Quantifiers (TB1:057-064)			
Statements involving nested quantif	iers, Order of Quantifiers, transla	ating to and	
from Mathematical/English statements to statements involving nested quantifiers.			
Negating Nested Quantifiers.			
Inference Rules (TB1:069-078)			
Valid Arguments in Propositional Logic, Rules of Inference for propositional			
logic, Checking Arguments validity, Rules of Inference for Quantified			
statements, Combining rules of Inference for propositions and quantified		quantified	
statements.			
Unit-2: Number Theory and Theor			
Divisibility and Modular Arithmet	,		
Division, Division Algorithm, Modu		I	
Integers and Primes (TB1:246-249,			
Integer Representations, Conversions	•	U 1	
below a given value, Twin primes,		n, Euclidean	
Algorithm, GCD as linear combination			
Solving Congruences (TB1:275-283)		_ ,	12
Linear Congruences, The Chinese Remainder Theorem, Fermat's Theorem, Euler			
Theorem.			
Introduction to Proofs (TB1:82-88)			
Direct Proof, Proof by Contraposition, Contradiction, Counter Example. Mathematical Induction (TB1:311-329) Why Mathematical Induction, Good and Bad of Mathematical Induction,			
Examples of Proofs, Guidelines.			
Unit-3: Sets, Relations and Function	ons	1	

Sets (TB1:115-124) Introduction, Subsets, Equality, Venn Diagrams, Cardinality, Power sets, Cartesian Product. **Set Operations** (TB1:127-134) Union, Intersection, Disjoint Sets, Difference, Set Identities, Generalized Unions and Intersections. **Relations** (TB2:442-445, 449-457) Binary Relation, Inverse Relation, Properties of Relations, Transitive closure. **Equivalence Relations** (TB2:459-474) Partition of a set, Relation induced by a partition of a set, Equivalence Relation, Equivalence classes. 08 Partial Order Relations (TB2:498-507) Antisymmetric, POSET, Hasse Diagrams, Total Ordering, Maximal, Minimal, Greatest, Lowest elements. **Functions** (TB1:138-152) Function, One-to-One functions, Onto Functions, Bijection Functions, Identity function, Inverse Functions, Composition of functions, Floor, Ceiling, round functions, Partial Function. **Cardinality with Applications to Computability** (TB2:428-437) Properties of Cardinality, Finite and Infinite Sets, Countable and Uncountable Sets, Cantor Diagonalization Process. **Unit-4: Basic Counting and Combinatorics** The Basics of Counting (TB1: 385-399) Introduction, Basic Counting Principles, More Complex Counting Problems, The Subtraction Rule, The Division Rule, Tree Diagrams The Pigeonhole Principle (TB1: 399-407) Introduction, The Generalized Pigeonhole Principle, Some Elegant Applications of the Pigeonhole Principle **Permutations and Combinations** (TB1: 407-415) Introduction, Permutations, Combinations 10 **Binomial Coefficients and Identities** (TB1: 415-423) The Binomial Theorem, Pascal's Identity and Triangle, Other Identities Involving **Binomial Coefficients Generalized Permutations and Combinations** (TB1: 423-434) Introduction, Permutations with Repetition, Combinations with Repetition,

79

Permutations with Indistinguishable Objects, Distributing Objects into Boxes

Generating Permutations and Combinations (TB1: 434-439) Introduction, Generating Permutations, Generating Combinations

Unit-5: Algebraic Structures	
Algebraic Systems: Examples and General Properties(TB3: 270-	
281)Definition and Examples, Some Simple Algebraic Systems and	
General Properties	
Semi groups and Monoids (TB3: 282- 294)	
Definition and Examples, Homomorphism of Semigroups and Monoids, Sub	
Semigroups and Sub monoids	
Groups (TB3: 319-342)	10
Definitions and Examples, Subgroups and Homomorphisms, Cosets and	
Lagrange's Theorem, Normal Subgroups, Algebraic Systems with Two Binary	
Operations	
Lattices as Partially Ordered sets (TB3 :379-397)	
Definition and Examples, Some Properties of Lattices, Lattices as Algebraic	
Systems, Sublattices, Direct Product and Homomorphism, Special Lattices	

Text	t(T) / Reference(R) Books:
T1	Discrete Mathematics and Its Applications, Kenneth H Rosen, 7th edition, MHP, 2012.
T2	Discrete Mathematics with Applications, Susanna SEpp, 4th Edition, CENGAGE
T3	Discrete Mathematical Structures with Applications to Computer Science, J P
	Tremblay, R Manohar, TMH, 1997.
R1	Discrete Mathematics, Seymour Lipschutz, Marc Lars Lipson, SCHAUM's outlines.
R2	Discrete Mathematical Structures, U S Gupta, Pearson Publications.
W1	https://www.coursera.org/learn/discrete-mathematics
W2	https://swayam.gov.in/course/1396-discrete-mathematics

Course (Course Outcomes: On completion of this course, students can		
CO1	Distinguish between Statement Logic and Predicate Logic.		
CO2	Apply mathematical proving techniques in order to solve recurrences and		
	elementaryalgebra problems.		
CO3	Illustrate by examples terminology, operations and mathematical models using		
	theories of sets, relations and functions.		
CO4	Apply permutations & Combinations in problem solving		
CO5	Explain basic properties of algebraic structures		

DATA STRUCTURES				
Subject Code	18ITITT3050	IA Marks	30	
Number of Lecture Hours/Week	3(L)	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03		1	
Unit -1:		I	Hours	
Basic concepts (TB1:001-045)				
Algorithm Specification – Introduct	tion, Recursive Algorithms, Data	Abstraction,		
Performance Analysis – Space (Complexity, Time Complexity,	Asymptotic		
Notation, Comparing Time Complete	xities, Performance Measurement			
Divide and Conquer Technique (1	TB2:65-97)			
Maximum-subarray problem, Stra	ssen's algorithm for matrix mu	ultiplication,	12	
Solving recurrence relations: Subst	itution method, recursion-tree met	thod, master		
method				
Searching and Sorting (TB1:317-3	336, TB1:408-423)			
Searching – Introduction, Sequentia	d Search, Binary Search, Sorting-	BubbleSort,		
Selection Sort, Insertion Sort, Quick	Sort, Merge Sort, Optimal Sorting	g Time		
Unit-2:				
Abstract Data Types (TB1:47-70)				
Abstract Data Type, The Polynom	•	OT, Sparse		
Matrix Addition and Multiplication.				
Stacks and Queues (TB1:099-109)				
The Stack Abstract Data Type, The	Queue Abstract Data Type, Circu	ılar Queue	10	
Abstract Data Type				
Stack Applications (TB1:116-126)				
Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks				
and Queues				
Unit-3:				
Singly Linked Lists (TB1:138-149)				
ADT, Operations, Dynamically Linl	ked Stacks and Queues			
Polynomials (TB1:150-155)				
Representing as SLL, Addition, multiplication and Erase operations			08	
Doubly Linked Lists (TB1:179, TB1:162-164)				
ADT, operations				
Unit-4: Trees (TB1: 186-190)				
Introduction Terminology, Represer	atation of Trace			
= -		versals		
Binary Trees (TB1: 191-212) ADT, Properties, Representations, Traversals, Additional Operations, ThreadedBinary Trees				
Binary Search Trees (TB1: 227-232)				
Introduction, Search, Insert and Delete operations, Height of BST.				
Heaps (TB1: 218-226)				
The Heap Abstract Data Type, Pr	riority Oueues. Insertion into a	max heap		
Deletion from a max heap. Heap so		<u>r</u> ,		

Unit-5:	Search	Trees	(TB1:528-617)

AVL Trees, 2-3 Trees, 2-3-4 Trees, Red – Black Trees, B-Trees and B+Trees and their operations: search, insert and delete

1	h	o
•	U	o
	_	_

Text	t(T) / Reference(R) Books:
T1	Fundamentals of Data Structures in C, Second Edition by Ellis Horowitz, Sartaj
	Sahni, Anderson – Freed, Universities Press.
T2	Interdiction to Algorithms, Thomas H Coremen, Charles ELeiserson, Clifford
	Stein, Third Edition, MIT Press/McGraw-Hill
R1	Algorithms, Data Structures, and Problem Solving with C++, Illustrated Edition by
	MarkAllen Weiss, Addison-Wesley Publishing Company
R2	How to Solve it by Computer, 2 nd Impression by R. G. Dromey, Pearson Education.
W1	https://www.coursera.org/specializations/data-structures-algorithms
W2	https://www.edx.org/course/foundations-of-data-structures-2
W3	https://swayam.gov.in/course/1407-programming-and-data-structures

Cour	Course Outcomes: On completion of this course, students can		
CO1	Analyze algorithms' time and space complexity and justify the correctness.		
CO2	Implement Stack and Queue ADT.		
CO3	Implement Linked List ADT.		
CO4	Implement Binary Tree ADT and traversal algorithms.		
CO5	Implement Graph ADT and BFS and DFS traversal algorithms.		

ANALOG & DIGITAL ELECTRONICS LAB				
Subject Code	18ITECL3060	IA Marks	15	
Number of Lecture Hours/Week	3(P)	Exam Marks	35	
Total Number of Lecture Hours	36	Exam Hours	03	

List of Experiments

(Minimum 12 Experiments to be done)

PART-A: (Experiments to be done by using Hardware Components)

Exercise 1

PN Junction Diode V-I Characteristics

Exercise 2

Zener Diode Characteristics

Exercise 3

Transistor Biasing

Exercise 4

BJT Input and Output Characteristics (CE Configuration)

Exercise 5

FET Drain and Transfer Characteristics (CS Configuration)

Exercise 6

BJT-CE Amplifier

Exercise 7

FET-CS Amplifier

Exercise 8

OP AMP Applications – Adder, Subtractor, Comparator Circuits

PART-B: (Experiments to be done by using MATLAB)

Exercise 9

Represent a signal using MATLAB and perform following

- i) Identify even and odd symmetries in a signal
- ii) Perform the amplitude scaling, time scaling and time shifting operations

Exercise 10

Determine the Fourier transformation of a signal

Exercise 11

State the sampling theorem and verify it.

Exercise 12

Determine the Laplace transformation of a signal

Exercise 13

Determine the Z - transformation of a signal

Exercise 14

Perform the convolution of two continuous signals

	the first the feat, elected of the feature we elected		
Cour	Course Outcomes: On completion of this course, students can		
CO1	Understand the characteristics of semiconductor devices		
CO2	Understand the nature of transistor and FET amplifier		
CO3	Apply sampling theorem to convert continuous-time signals to discrete-time signal andreconstruct back.		
CO4	Analyze the continuous-time signals and systems using Fourier and Laplace transforms		
CO5	Apply Z - transformation and convolution of two continuous signals		

IT Workshop Lab				
Subject Code	18ITITL3070	IA Marks	15	
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

LIST OF EXPERIMENTS

Exercise1

Study of basic scilab commands

Exercise2

Matrix constructors and operations

Exercise3

Matrix bitwise, relational & logical operations

Exercise4

Control structures (If-Else, If-elseif -else, Select)

Exercise5

Control structures (for, while, break and continue)

Exercise6

Graphics - 2d plots

Exercise7

Computer application program

Exercise8 Civil application program

Exercise9 Electronics application program

Exercise10 Electronics application program

Cour	Course Outcomes: On completion of this course, students can		
CO1	Understand the need for simulation/implementation for the verification of		
	mathematicalfunctions.		
CO2	Understand the main features of the SCILAB program development environment		
	toenable their usage in the higher learning.		
CO3	Understand control flow of the program.		
CO4	Implement simple mathematicalenvironment such as SCILAB.		
	functions/equations in numerical computing		
CO5	Interpret and visualize simple mathematical functions and operations thereon		
	using plots/display.		

DATA STRUCTURES LAB					
Subject Code	18ITITL3080	IA Marks	15		
Number of Tutorial Hours/Week	3(P)	Exam Marks	35		
Total Number of Practice Hours	04	Exam Hours	03		

List of Experiments

Exercise 1 (Sorting) Bubble Sort Selection Sort Insertion Sort

Exercise 2 (Sorting)Quick Sort Merge Sort

Exercise 3 (Abstract Data Types) Stacks and Queue using arrays Stacks and Queue usingLinked Lists

Exercise 4 (Applications of Stack)Infix to Postfix Conversion Postfix Expression Evolution

Exercise 5 (Linked List Applications)

Polynomial Addition Polynomial Multiplication

Exercise 6

Doubly Linked List Circular Linked List

Exercise 7 (Search Trees) Binary Search Trees

Exercise 8 (Search Trees)

Binary HeapHeap Sort

Exercise 9 (Search Trees)

AVL Trees

Exercise 10 (Search Trees)

Red-Black Trees

Exercise 11 (Search Trees)

B- Trees

Exercise 12 (Search Trees)

B+ Trees

Cours	Course Outcomes: On completion of this course, students can		
CO1	CO1 analyze time and space complexity and justify them.		
CO2	2 ImplementStacks and Queues and demonstrate applications of stacks.		
CO3	Implement different types of lists and operations.		
CO4	CO4 Implement variety of search trees and traversal algorithms.		
CO5	Implement various sorting algorithms.		

Department of Information Technology Detailed Syllabus

IV SEMESTER (II-II)

SIGNAL	LS & SYSTEMS		
Subject Code	18CMCET4010	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Definition of Signals and Systems, Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability. Examples.			12
Unit -2			
Behavior of continuous and discrete-tine Impulse response and step response, of aperiodic convergent inputs, cascade causality and stability of LTI systems. See equations and difference equations. States Space Analysis, Multi-input, multi-output and its Role. Periodic inputs to an LTI system and its relation to the impulse response.	convolution, input-outp interconnections. Ch ystem representation the e-space Representation at representation. State	naracterization of crough differential of systems. State- Transition Matrix	12
Unit – 3			
Fourier Transformation: Fourier series representation of period Calculation of Fourier Coefficients. For ion and their effect in the frequency of Fourier domain duality. The Discrete-T Discrete Fourier Transform (DFT). Parse Unit – 4	urier Transform, convo lomain, magnitude and ime Fourier Transform	olution/multiplicat l phase response,	8
Laplace Transforms: Review of the Laplace Transform for system functions, poles and zeros of domain analysis, solution to differential e Z-Transforms: The z-Transform for discrete time signals.	system functions and equations and system be	signals, Laplace chavior.	10
andzeros of systems and sequences, z-do	•	· *	
Unit – 5	<u> </u>		
Sampling and Reconstruction: The Sampling Theorem and its implementation and its implementa	order hold, first-order hand discrete time system	nold. Aliasing and ans. Introduction to	8

Text	t(T) / Reference(R) Books:		
T1	Signals and Systems, 2nd Edn, A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI.		
T2	Signals, Systems & Communications, B.P. Lathi, BS Publications.		
T3	Signals & Systems, 2nd Edition. Simon Haykin and Van Veen, Wiley.		
R1	Principles of Linear Systems and Signals, BP Lathi, Oxford University Press.		
R2	Fundamentals of Signals and Systems, International Edition, Michel J. Robert, MGH.		
R3	Digital Signal Processing: Principles, Algorithms, and Applications, J. G. Proakis and D. G. Manolakis, Pearson.		
R4	Signals and Systems, T K Rawat , Oxford University press.		
W1	https://www.coursera.org/courses?query=signals%20and%20systems		
W2	https://onlinecourses.nptel.ac.in/noc18_ee02/preview		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Able to characterize the signals and systems.		
CO2	Able to understand the Behavior of continuous and discrete-time LTI systems		
CO3	Able to analyze the continuous-time signals and continuous-time systems using		
	Fourierseries, Fourier transform and Laplace transform.		
CO4	Able to apply z-transform to analyze discrete-time signals and systems.		
CO5	Able to apply sampling theorem to convert continuous-time signals to discrete-		
	timesignal and reconstruct back.		

ENGIN	EERING MECHANICS		
Subject Code	18CMCET4020	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03	-	
Unit -1			Hours
Systems of Forces:			
Coplanar Concurrent Forces – Con	nponents in Space - Resu	ıltant – Moment	
ofForce and its Application – Couple	es and Resultant of Force S	ystems.	
Friction:			10
Introduction, limiting friction and is	-	o's laws of dry	
friction, coefficient offriction, cone of	of friction		
Unit -2			
Equilibrium of Systems of Forces:			
Free Body Diagrams, Equations of	-	-	
Systems for concurrent forces. I	_		8
equilibrium of coplanar forces, Co			
converse of the law of polygon of forces condition of equilibrium, analysis of			
plane trusses.			
Unit - 3			
Centroid and Centre of Gravity co		ammasita saatiansi	
Centroid of simple figures from fir		_	
Centre of Gravity and its implicat			10
Moment of inertia of plane sections inertia, Moment of inertia of standard			
Mass moment inertia of circular pla	1	*	
Unit – 4	ite, Cymider, Cone, Sphere	z, 1100K.	
Kinematics:			
	s Velocity and Acceler	ation Motion of	
Rectilinear and Curvilinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion. Kinetics: Analysis as a			12
Particle and Analysis as a Rigid Body in Translation— Central Force Motion—			12
Equations of Plane Motion – Fixed A	=		
Unit-5			
Work – Energy Method:			
Equations for Translation, Work-	-Energy Applications to	Particle Motion	
Connected System-Fixed Axis Rota			10
method.		r	10

Text	Text(T) / Reference(R) Books:		
T1	Engg. Mechanics4th Edn, S.Timoshenko&D.H.Young, Mc Graw Hill publications.		
T2	Engineering Mechanics-Statics and Dynamics, A Nelson, Tata McGraw		
	HillEducationPrivate Ltd.		
R1	Engineering Mechanics statics and dynamics, 11th Edn, R.C.Hibbeler, Pearson.		
R2	Engineering Mechanics, statics, 6th Edn, J.L.Meriam, Wiley India Pvt Ltd.		
R3	Engineering Mechanics, statics and dynamics, I.H.Shames, Pearson		
R4	Mechanics For Engineers, statics, 5th Edn, F.P.Beer&E.R.Johnston, Mc Graw Hill		
R5	Mechanics For Engineers, dynamics, 5th Edn, F.P.Beer&E.R.Johnston, Mc Graw Hill		
R6	Theory & Problems of engineering mechanics, statics & dynamics, 5th Edn,		
	E.W.Nelson, C.L.Best& W.G. McLean, Mc Graw Hill.		
R7	Singer's Engineering Mechanics: Statics and Dynamics, K. Vijay Kumar Reddy, J.		
	Suresh Kumar, Bs Publications.		
R8	Engineering Mechanics, Fedinand . L. Singer, Harper, Collins		
W1	https://swayam.gov.in/courses/5241-engineering-mechanics		
W2	https://onlinecourses.nptel.ac.in/noc16_ph02/preview		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Able to Resolve the forces into components, moment of force and its applications		
CO2	Construct free body diagrams and develop appropriate equilibrium equations.		
CO3	Determine centroid and moment of inertia for composite areas.		
CO4	Determine the kinematic relations of particles & rigid bodies.		
CO5	Apply equations of motion to particle and rigid body using the principle of energy andmomentum methods.		

COMPU	TER ORGANIZATION		
Subject Code	18ITITT4030	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits: 03		
Unit -1			Hours
Functional Units:			
Input Unit, Memory Unit, Arithmetic Logic Unit, Output Unit, Control Unit, Number Representations: Integers (Signed and Unsigned), Addition and subtraction, Sign Extension, Overflow in Integer Arithmetic, Floating-point Numbers, Characters,Integer Addition and Subtraction: Ripple-carry adder, Carry- Lookahead Adder, Integer Multiplication: Array Multiplier, Shift-and-Add, Booth Multiplier, Carry-Save Addition of Summands, IntegerDivision: Restoring Division, Non-Restoring Division, Floating Point Arithmetic: Representation, Operations, Guard bits and Truncation, Implementation of Operations			11
Unit -2			
Basic Concepts:			
Memory Locations and Addresses, Byte Addressability, Big-Endian and Little-Endian Assignments, Word Alignment, Memory Operations, Instruction Sets: Notations for Data Transfer, RISC and CISC Instruction Sets, Introduction to RISC Instructions, Logic Instructions, Shift and Rotate, Multiplication and Division, dealing with 32-bit Immediate Values, CISC Instruction Sets, RISC and CISC Styles, Instruction Execution: Sequencing, Branching, Addressing Modes: Accessing Variables, Indirection and Pointers, Indexing and Arrays, Additional Addressing modes, Condition Codes.			10
Unit – 3			
Basic Concepts:			
Main Hardware Components, Data Processing Hardware, Instruction Execution: Load Instructions, Arithmetic and Logic Instructions, Store Instructions, Hardware Components: Register File, ALU, Data Path, Instruction Fetch Section, Instruction Fetch and Execution: ADD, LOAD, STORE, BRANCH and Subroutine call instructions; instruction encoding, Wait for Memory, Control Unit Design: Control Signals, Hardwired Control, Microprogrammed Control			08
Unit – 4			
Basic Concepts: Basics, Cache Memory, Virtual Mer Organization:	mory, Block Transfers, Mer	mory	10

Internal Organization of Memory Chips, Static RAMs, Dynamic RAMs, Synchronous DRAMs, Structure of Larger Memories, Read-Only Memories, Memory Hierarchies, Cache Memories: Locality of Reference, Cache Hit and Miss, Mapping Techniques: Direct, Associate, Set-associate; Replacement Algorithms, Hit Rate and Miss Penalty, caches on the processor Chip, Enhancing Cache Performance, Peripherals: Accessing I/O Device, I/O Interface, Program-controlled I/O, Interrupts: Concept, Enabling and Disabling, Handling Multiple Devices, Controlling I/O Devices (Interrupt-driven I/O), Processor Control Registers, Direct MemoryAccess:DMA Controller and registers

Unit-5

Pipeline:

Ideal Case, Organization, Issues, Data Dependencies: Concept, Operand Forwarding, Handling Data Dependencies, Effect of Delays: Memory Delays, Delays due to Unconditional and Conditional Branches, Branch Delay Slot, Static and Dynamic Prediction, Branch Target Buffer for Dynamic Prediction, Resource Limitation, Performance Evaluation: Effects of Stalls and Penalties, Number of Pipeline Stages, Super Scalar Operation: Concept, Branches and Data Dependencies, Out-of-order Execution, Execution Completion, Dispatch Operation, Parallel Processing: Hardware Multithreading, Vector Processing, Graphics Processing Units (GPUs), Shared Memory Multiprocessors, Cache Coherence: Write-Through protocol, Write Back Protocol, Snoopy Caches, Directory Based Cache Coherence, Message Passing

11

Text	Text(T) / Reference(R) Books:		
T1	Computer Organization and Embedded Systems, 6th Edition, Carl		
	Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, McGraw-		
	Hill Publications.		
R1	Computer Organization and Design: The Hardware/Software Interface, 5th Edition,		
	David A. Patterson, John L. Hennessy, Morgan Kauffman Publishers (Elsevier).		
W1	https://swayam.gov.in/course/3747-computer-organization		
W2	https://online.stanford.edu/courses/cs107-computer-organization-and-systems		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Get familiar with Operating System fundamentals.		
CO2	Attain knowledge on processes, threads and the communication between them.		
CO3	Understand the mechanism for executing jobs by the underlying processor.		
CO4	Comprehend the intricacies of sharing limited available resources among		
	theprocesses and threads.		
CO5	Gain insights into the mechanisms for managing memory, disks and I/O devices.		

ALGORITHM	MS DESIGN AND ANALY	SIS	
Subject Code	18ITITT4040	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits: 03		
Unit -1			Hours
Elements of Dynamic Programmin	ıg:		
Optimal sub structure, overlapping	sub problems, Reconstructin	g an optimal	
solution, Memorization.			
Example Problems:			
Longest common Subsequence, Opt	timal Binary search trees, S	tring Editing,	
0/1Knap Sack Problem, The Traveli	ng Salesperson Problem,		11
Elements of Greedy Strategy:			
Concept, Greedy – Choice property	, Optimal sub structure, Gr	eedy vs	
Dynamicprogramming,			
Example Problems: Huffman codes	s, Knap Sack Problems, Tree	e Vertex	
Splitting,			
Job Sequencing with Dead Lines. Unit -2			
Back Tracking:	aca Trae Organization of	Stata Space and	
Concept, State Space, Solution Space illustration using 4-		-	
Solution Space, illustration using 4-Queens Problem, Sum of Subsets Problems, Example Problems:			
8-Queens Problem, Sum of Sub sets, Graph Coloring, Hamiltonian Cycles, 0/1			
Knap Sack Problem,			09
Branch and Bound:			0)
Least Cost (LC) Search, 15-Puzzle Example, Control Abstraction for LC-Search,			
Bounding, FIFO Branch-and-Bound, LC-Branch-and -Bound,			
Example Problems:			
0/1 Knap Sack Problem, Traveling Sales Person Problem			
Unit – 3			
Elementary Graph Algorithms:			
Concepts, Representation of Gra	phs, Breadth First Searc	h, Depth First	
Search, Topological sort, Strongly Connected Components, Biconnected			
Components, Articulation Points			
Minimum Spanning Trees:			
Growing Minimum Spanning Tree, Kruskal's Algorithm, Prim's Algorithms,			11
Single Source Shortest Paths:			11
Shortest Path, Edge Weights, Variants of Shortest Path Problems, Optimal Sub			
Structure of Shortest Path, Negative Edge Weights, Cycles, Representing Shortest			
Paths, Relaxation, Properties of Shor	test path and Relaxation,		
All-Pairs Shortest Paths:	Inlini oction		
Concept, Shortest Path and Matrix M	iuitipiication,		
Shortest Path Algorithms:	·		
Bellman Ford Algorithm, Dijkstr	a`s Algorithm, Floyd- Warsh	all Algorithm.	

Unit – 4	
Computability of Algorithms:	
Tractable and Intractable, Computability Classes – P, NP, NPC, NPH,	
showingproblems to be NPC, Reductions,	
Tractable Problems:	
Supporting arguments, Abstract Problems, Encodings,	
Polynomial Time Verification:	
Hamiltonian Cycles, Verification Algorithms, Complexity class NP,	10
NP Completeness:	10
Reducibility, NP Completeness, Circuit Satisfiability, Circuit Satisfiability,	
NP Completeness Proof:	
Formula Satisfiability, 3CNF Satisfiability,	
NP-Complete Problems:	
Clique, Vertex-cover, Hamiltonian Cycle, Traveling-Salesman Problem, Subset	
Sum Problem	
Unit – 5	
Approximation Algorithms:	
Roles and functions, Components, Structure, Operations, Load Balancing	
Problem, Center Selection Problem, Set Cover, Greedy Heuristics,	
Randomized Algorithms:	09
Contention Resolution, Global Minimum Cut, Random Variables and Their	
Expectations, A Randomized Approximation Algorithm for MAX 3-SAT,	
Randomized Divide and Conquer: Median Finding and Quick Sort.	

Text	Text(T) / Reference(R) Books:			
T1	Interdiction to Algorithms, Third Edition, Thomas H Coremen, Charles			
	E.Leiserson, Clifford Stein, MIT Press/McGraw-Hill.			
T2	Computer Algorithms, Ellis Horowitz, Sartaj Sahni, S Rajasekaran, Computer			
	Science Press			
T3	Algorithm Design, First Edition, JON Kleinberg, EVA Tardos, Pearson Addison			
	Wesley			
R1	Algorithm Design: Foundation, analysis, and Internet Examples, First Edition,			
	JohnWiley & sons			
W1	https://www.coursera.org/specializations/algorithms			
W2	https://swayam.gov.in/course/4417-design-and-analysis-of-algorithms			

Cour	se Outcomes: On completion of this course, students can
CO1	For a given algorithms analyze worst-case running times of algorithms based
	onasymptotic analysis and justify the correctness of algorithms.
CO2	
	for it. For a given problem develop the greedy algorithms.
CO3	Describe the divide-and-conquer paradigm and explain when an algorithmic
	designsituation calls for it. Synthesize divide-and-conquer algorithms. Derive and
	solve recurrence relation.
CO4	Describe the dynamic-programming paradigm and explain when an algorithmic
	design situation calls for it.
CO5	For a given problems of dynamic-programming an develop the dynamic
	programmingalgorithms and analyze it to determine its computational complexity.
	For a given model engineering problem model it is using graph and write the
	corresponding algorithm to solve the problems.

JAVA PROGRAMMING				
Subject Code	18ITITT4050	IA Marks	30	
Number of Lecture Hours/Week	3(L)	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03			
Unit -1: Introduction to OOP			Hours	
Introduction to Object Oriented	Programming, Principles of Obj	ect-Oriented		
Languages, Procedural languages	Languages, Procedural languages Vs OOP, History and Evolution of Java, Java			
Virtual Machine, Java Features,	Program Structure, Variables, Pri	mitive Data	08	
Types, Variables, Type Conversion	on and Casting, Operators, Contro	ol		
Statements, Arrays, String.				
Unit -2: Introducing Classes, Me	thods and Inheritance			
Class Fundamentals, Declaring	Objects, Reference Variable	s, Methods,		
Constructors, this keyword, Garbag	•			
Overloading Methods and Constr	ructors, usage of static and fina	l keywords,	10	
Command line arguments.			10	
Inheritance basics, using super, me	ethod overriding, dynamic method	l dispatch,		
abstract classes.				
Unit – 3: Packages, Interfaces, Ex				
Packages, Access Protection, Interfaces, Exception Handling, Exception types,				
built in exceptions, user defined exceptions, using try, catch, throw, throws,			10	
finally, chained exceptions, assertions I/O Basics, reading console input and			10	
writing console output, Reading and Writing Files				
Unit – 4: Multi-Threading and ja				
Java Thread Model, creating a th	•			
Thread Communication, collections overview, collection interfaces, collection			10	
classes, iterator, maps, comparators.				
Unit – 5: Introducing GUI Progra				
JavaFX Basic Concepts, JavaFX		•	4.0	
Button, Image, Image View, Radio		mbo	12	
Box, Text Field, Scroll Pane, JavaF	x Menus, JavaFX Event Handling			
Text(T) / Reference(R) Books:				
T1 The complete Reference Java	, 9th edition, Herbert Scheldt, TMF	[.		
T2 Programming in JAVA, Sach	in Malhotra, SaurabhChoudary, Ox	aford.		
R1 JAVA Programming, KRajku	mar, Pearson			
R2 Core JAVA, Black Book, Nag	geswara Rao, Wiley, Dream Tech			
R3 Core JAVA for Beginners, Ra	ashmi Kanta Das, Vikas.			
R4 Object Oriented Programming	g Through Java, P. Radha Krishna,	Universities Pr	ress.	
W1 https://www.edx.org/learn/jav	<u>a</u>			
W2 https://onlineitguru.com/core-	java-online-training-placement.htr	<u>nl</u>		

Cour	Course Outcomes: On completion of this course, students can	
CO1	Design classes, interfaces and packages.	
CO2	Demonstrate inheritance, polymorphism, encapsulation.	
CO3	Demonstrate user defined exceptions.	
CO4	Create Threads to parallelize operations.	
CO5	Create rich user-interface applications using modern API JavaFX.	

COMPUTER ORGANIZATION LAB			
Subject Code	18ITITL4060	IA Marks	15
Number of Tutorial Hours/Week	03(P)	Exam Marks	35
Total Number of Practice Hours	48	Exam Hours	03

Credits – 1.5

List of experiments

Exercise 1

- a) Write a Machine Language Program to perform Addition of two numbers.
- b) Write a Machine Language Program to perform Subtraction of two numbers.

Exercise 2

- a) Write a Machine Language Program to perform Addition of **n** numbers.
- b) Write a Machine Language Program to generate **n** numbers.

Exercise 3

- a) Write a Machine Language Program to generate **n** Even numbers.
- b) Write a Machine Language Program to generate **n**Odd numbers.

Exercise 4

- a) Write a Machine Language Program to move data from one block to another block.
- b) Write a Machine Language Program to mask 4 high-order bits.

Exercise 5

- a) Write a Machine Language Program to read data at location 4400 and unpack data into 07, 0Eand store in 4401 & 4402.
- b) Write a Machine Language Program to Subtract an array of elements to get positive result

Exercise 6

- a) Write a Machine Language Program to Find largest element of an array.
- b) Write a Machine Language Program to Perform Linear Search operation.

Exercise 7

- a) Write a Machine Language Program to Find smallest element of an array.
- b) Write a Machine Language Program to Find largest value among two numbers.

Exercise 8

- a) Write a Machine Language Program to Find smallest value among two numbers.
- b) Write a Machine Language Program to Find factorial of given number.

Exercise 9

- a) Write a Machine Language Program to generate Fibonacci Series.
- b) Write a Machine Language Program to Convert a number from Hexadecimal to BCD.

Exercise 10

- a) Write a Machine Language Program to separate Even and Odd numbers.
- b) Write a Machine Language Program to find 1's Complement and 2's Complement of anumber.

Exercise 11

- a) Write a Machine Language Program to perform addition of first **n** numbers.
- b) Write a Machine Language Program to perform Division of two 8-bit numbers.

Exercise 12

- a) Write a Machine Language Program to Convert ASCII to Decimal and vice versa.
- b) Write a Machine Language Program to Convert a number from Hexadecimal to Decimal.

Cour	Course Outcomes: On completion of this course, students can		
CO1	Get familiar with Operating System fundamentals.		
CO2	Attain knowledge on processes, threads and the communication between them.		
CO3	Understand the mechanism for executing jobs by the underlying processor.		
CO4	Comprehend the intricacies of sharing limited available resources among the processes and threads.		
CO5	Gain insights into the mechanisms for managing memory, disks and I/O devices.		

ALGORITHMS DESIGN AND ANALYSIS LAB				
Subject Code	18ITITL4070	IA Marks	15	
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	48	Exam Hours	03	

LIST OF EXPERIMENTS:

Exercise 1 (Dynamic Programming Technique)

- a) Longest common Subsequence
- b) Develop Optimal Binary search trees

Exercise 2 (Dynamic Programming Technique)

- a) 0/1 Knap Sack Problem,
- b) The Traveling Salesperson Problem.

Exercise 3 (Greedy Methods)

- a) Huffman codes
- b) Knap Sack Problems

Exercise 4 (Greedy Methods)

- a) Tree Vertex Splitting
- b) Job Sequencing with Dead Lines

Exercise 5 (Back Tracking Techniques)

- a) 8-Queens Problem
- b) Sum of Sub sets

Exercise6 (Back Tracking Techniques)

- a) Graph Coloring.
- b) Hamiltonian Cycles

Exercise 7 (Back Tracking Techniques)

a) 0/1 Knap Sack Problem

Exercise 8 (Branch and Bound)

- a) 0/1 Knap Sack Problem
- b) Traveling Sales Person Problem

Exercise 9 (Graph Algorithms)

- a) Breadth First Search
- b) Depth First Search

Exercise 10 (Graph Algorithms)

- a) Kruskal's Algorithm
- b) Prim's Algorithms

Exercise 11 (Graph Algorithms)

- a) Bellman Ford Algorithm
- b) Dijkstra`s Algorithm

Exercise 12 (Graph Algorithms)

a) Floyd- Warshall Algorithm.

Cour	rse Outcomes: On completion of this course, students can
CO1	
	asymptotic analysis and justify the correctness of algorithms.
CO2	Describe the greedy paradigm and explain when an algorithmic design situation
	calls for it. For a given problem develop the greedy algorithms.
CO3	Describe the divide-and-conquer paradigm and explain when an algorithmic design
	situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve
	recurrence relation.
CO4	Describe the dynamic-programming paradigm and explain when an algorithmic
	design situation calls for it.
CO5	For a given problem of dynamic-programming an develop the dynamic
	programmingalgorithms and analyze it to determine its computational complexity.

JAVA PROGRAMMINGLAB				
Subject Code	18ITITL4080	IA Marks	15	
Number of Tutorial Hours/Week	3(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

List of experiments

Exercise 1 (Basics)

- c) Write a Java program to display default value of all primitive data type of Java. Write a Java Program to print the area of the Triangle
 - d) Write a Java program to check whether the given number is even or odd.

Exercise 2 (Basics-Continued)

- a) Write a Java program to display the Fibonacci sequence
- b) Write a Java program that display the roots of a quadratic equation ax2+bx=0. Calculate the discriminate D and basing on value of D, describe the nature of root.
- c) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Take as input the speed of each racerand print back the speed of qualifying racers.

Exercise 3 (Operations, Expressions, Control-flow, Strings)

- a) Write a Java program to search for an element in a given list of elements using binary search.
- b) Write a Java program to sort given list of elements using bubble sort
- c) Write a Java program using StringBuffer to delete, remove character.

Exercise 4 (Class, Objects, Methods)

- a) Write a Java program to implement class mechanism. Create a class, methods andinvoke them inside main method.
- b) Write a Java program to implement constructor.
- c) Write a Java program to implement constructor overloading.
- d) Write a Java program implement method overloading.

Exercise 5 (Inheritance)

- a) Write a Java program to implement Single Inheritance
- b) Write a Java program to implement multi-level Inheritance
- c) Write a Java program to find areas of different shapes using abstract class.

Exercise 6 (Inheritance - Continued)

- a) Write a Java program give example for "super" keyword.
- b) Write a Java program to implement Interface.
- c) Write a Java program that implements Runtime polymorphism

Exercise 7 (Exceptions)

- a) Write a Java program that describes exception handling mechanism
- c) Write a Java program for creation of Illustrating throw, throws and finally Write a Java program to illustrate sub class exception precedence over base class.
- d) Write a Java program for creation of User Defined Exception

Exercise 8 (Packages)

- a) Write a Java program to create a package named pl and implement ex1 class in it.
- b) Write a Java program to create a package "mypack" and import it in circle class.
- c) Write a Java program illustrate class path

Exercise 9 (I/O)

- a) Write a Java program to illustrate the concept of I/O Streams.
- b) Write a Java program that reads a file name from the user, and then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes.
- c) Write a Java program that displays the number of characters, lines and words in a text file.

Exercise 10 (Threads)

- a) Write a Java program that creates threads by extending Thread class .First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds ,(Repeat the same by implementing Runnable)
- b) Write a Java program to illustrate the concept of Thread synchronization.
- c) Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication

Exercise 11 (Collections)

- a) Write a Java program to create a new array list, add some colors (string) and print out the collection.
- b) Write a Java program to iterate a linked list in reverse order.
- c) Write a Java program to iterate through all elements in a hash list.
- d) Write a Java program to associate the specified value with the specified key in a HashMap.

Exercise 12 (JavaFX)

- a) Write a Java program to demonstrate Mouse and Keyboard event Handling
- b) Write a Java program to design a notepad editor.

Cour	Course Outcomes: On completion of this course, students can	
CO1	Understand and Apply Object oriented features and Java concepts.	
CO2	Examine and analyze alternative solutions to a given problem using java.	
CO3	Apply the concept of multithreading and implement exception handling.	
CO4	Implement front end and back end of an application using Java	
CO5	Develop applications using Console I/O and File I/O, GUI applications.	

Department of Information Technology Detailed Syllabus

V SEMESTER (III-I)

MAN	AGEMENT SCIEN	ICE		
Subject Code	18CMMST5010	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	70	
Total Number of Lecture Hours	60	Exam Hours	03	
	Credits – 03	<u>'</u>		
Unit -1: Introduction to Manageme	ent		Hours	
Concept –nature and importance of	Management – Func	tions of Management –		
Evaluation of Management thought- Theories of Motivation – Decision making			12	
process-Designing organization struc	cture- Principles of o	organization - Types of	12	
organization structure.				
Unit -2: Operations Management				
Principles and Types of Managemen	t – Work study- Stat	istical Quality Control-		
Control charts (P-chart, R-chart, a	and C chart). Simp	le problems- Material	12	
Management: Need for Inventory control- EOQ, ABC analysis (simple problems)			12	
and Types of ABC analysis (HML, SDE, VED, and FSN analysis).				
Unit – 3: Functional Management &	&Strategic Manager	nent		
Functional Management: Concept	of HRM, HRD and	PMIR- Functions of		
HRM - Marketing Management- Fun	nctions of Marketing	, Marketing strategies		
based on product Life Cycle, Channels of distributions.			14	
Strategic Management: Vision, Mission, Goals, Strategy – Elements of			17	
Corporate Planning Process – Enviro	onmental Scanning -	SWOT analysis- Steps		
in Strategy Formulation and Impleme		tegy alternatives		
Unit – 4: Project Management: (PE	RT/CPM)			
Development of Network - Difference between PERT and CPM Identifying			10	
Critical Path- Probability- Project Crashing (Simple Problems).			10	
Unit – 5:Contemporary Manageme				
Basic concepts of MIS, MRP, J	ustin- Time (JIT) s	ystem, Total Quality		
Management (TQM), Six sigma , Supply Chain Management, Enterprise			12	
Resource Planning (ERP), Busines		, ,	12	
process Re-engineering and Bench M	arking, Balanced Sco	ore Card.		

Text(T)	Text(T) / Reference(R) Books:		
T1	Management Science, Dr. P. Vijaya Kumar & Dr. N. Appa Rao,		
T2	Management Science, Dr. A. R. Aryasri, TMH2011.		
R1	Essentials of Management, Koontz & Weihrich, TMH 2011		
R2	Global Management Systems, Seth &Rastogi, Cengage Learning, 2011		
R3	Organizational Behaviors, Robbins, Pearson Publications, 2011		
R4	Production & Operational Management, KanishkaBedi, Oxford Publications, 2011		
R5	Management Science, Manjunath, Pearson Publications, 2013.		
R6	Human Resource Management, Biswajit Patnaik, PHI, 2011		
R7	Strategic Management, Hitt and Vijaya Kumar, Cengage Learning		

Web Resources:			
W1	https://msande.stanford.edu/academics/graduate/masters-program/hcp-part-time-		
	ms/online-courses		
W2	https://www.coursera.org/browse/business/leadership-and-management		

Course	Course Outcomes: On completion of this course, students can				
CO1	Understand the concept and functions of Management, and Theories of Motivation,				
	Styles of Leadership.				
CO2	Apply the Statistical Quality Control Techniques, Methods of inspection, the concept				
	of Inventory Management and Control.				
СОЗ	Understand the functional areas of organization i.e., Marketing Management, Human				
	Resource Management, and Strategic Management				
CO4	Apply Project Management Techniques.				
CO5	Understand the various contemporary issues in Management Practices like TQM and				
	BPO etc.				

DATABASEMANAGEMENTSYSTEMS						
SubjectCode	18ITITT5020	IAMarks	30			
NumberofLectureHours/Week	3	ExamMarks	70			
TotalNumberof LectureHours	50	ExamHours	03			
Credits-03						
Unit -1: Database system architecture						
Introduction to Databases: Characteristics of the Database Approach, Advantages of						
using the DBMS Approach, A Brief	using the DBMS Approach, A Brief History of Database Applications. Overview of					
Database Languages and Architec	ctures: Data Models, Schemas an	d Instances,	10			
Three-Schema Architecture and Dat	ta Independence, Database Users,	Architecture				
for DBMS.						
Unit -2 : E-R Models						
The E-R						
Models, The Relational Model, Introduction to Database Design, Database Design and Er						
Diagrams, Entities Attributes, and Entity Sets, Relationship and Relationship Sets,						
Conceptual Design with the Er Models, The Relational Model Integrity Constraints						
Over Relations, Key Constraints, Fo	oreign Key Constraints, General Con	nstraints.				
Unit - 3: Relational Algebra						
Relational Algebra, Selection and Projection, Set Operation, Renaming, Joins,						
Division, More Examples of Queries, Relational Calculus: Tuple Relational						
Calculus, Domain Relational Calculus.						
The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries,						
Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers						
and Active Database.						
Unit - 4: Normalization						
Purpose of Normalization or schema	-	-				
normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of						
surrogate key, Boyce-Codd normal		dependency	08			
preserving decomposition, Fourth no						
Unit - 5: Transaction Managemen						
Transaction, properties of transactio	_	_				
with SQL using commit rollback and save point. Concurrency control for lost						
updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency						
control with locking methods, lock		_	12			
ensuring serializability, deadlocks,		mp ordering:				
Wait/Die and Wound/Wait Schemes	s, Database Recovery management.					

Text(T)/Reference(R)Books:			
T1	IntroductiontoDatabaseSystems,CJ Date,Pearson.		
T2	Database Management Systems,3 rd Edition,Raghurama Krishnan, Johannes		
12	Gehrke,TATAMcGraw Hill.		
T3	DatabaseSystems-TheCompleteBook,HGMolina,JDUllman,JWidomPearson.		
T4	DatabaseManagementSystems,6/eRamezElmasri,ShamkantB.Navathe, PEA		
R1	DatabaseSystems design, Implementation,		
Kı	andManagement,7 th Edition,PeterRob&CarlosCoronel		
R2	DatabaseSystemConcepts,5 th edition,Silberschatz,Korth,TMH		
R3	The Database Book Principles & Practice Using Oracle/MySQL, Narain Gehani, University Pr		
	ess.		
W1	https://onlinecourses.nptel.ac.in/noc18_cs15/preview		
W2	https://www.coursera.org/courses?query=database		

Course Outcomes: On completion of this course, students can		
CO1	Understand the basic elements of a relational database management system.	
CO2	Draw entity relationship and convert entity relationship diagrams into RDBMS.	
CO3	Create, maintain, and manipulate a relational database using SQL.	
CO4	Designs and applies normalization techniques for logical schema model.	
CO5	Solves concurrent issues and problems through locking mechanism.	

OPE	RATING SYSTEMS		
Subject Code	18ITITT5030	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Operating Systems Overview	γ		Hours
Computer system organization, Operation	ing system structure, Functi	ons Of Operating	
Systems, Types Of Operating System	ns, Process, memory, stora	ge management,	08
Protection and security, Distributed	systems, Computing Envir	ronments, Open-	Uð
source operating systems, OS services,	User operating-system inter	face.	
Unit -2:System Calls & IPC			
System calls, Types, System programs	s, OS structure, OS generati	on, System Boot	
Process concept, Operations on proc	esses, Cooperating process	es, Inter-process	10
communication, Multi-threading model	S.		
Unit – 3:Process Management			•
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling,			
Multiple processor scheduling Operating system, Algorithm Evaluation, The critical		10	
section problem, Peterson's solution, Synchronization hardware, Semaphores,		10	
Classic problems of synchronization, C	ritical regions, Monitors.		
Unit – 4: Memory Management & De	ead lock		
System model, Deadlock characteri	zation, Methods for hand	dling deadlocks,	
Deadlock Prevention, Deadlock Avoi	dance, Deadlock detection	, Recovery from	
deadlock. Storage Management: Swapp	oing, Contiguous memory a	location, Paging,	10
Segmentation Virtual Memory Backgr	ound, Demand paging, cop	y on write, Page	10
replacement and various Page repla	cement algorithms, Alloca	ation of frames,	
Thrashing.			
Unit – 5: I/O Systems			
File concept, Access methods, D	irectory structure, File-sy	stem mounting,	
Protection, Directory implementation,	Allocation methods, Free-sp	ace management,	12
Disk scheduling, Disk management, Sw	vap-space management, Prot	ection.	

Text	Text(T) / Reference(R) Books:		
T1	Operating System Concepts Essentials, Abraham Silberschatz, Peter B. Galvin, Greg		
	Gagne, John Wiley & Sons Inc., 2010.		
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter Baer Galvin and		
	Greg Gagne, John Wiley and Sons Inc., 2012		
T3	Operating Systems, Second Edition, S Halder, Alex A Aravind, Pearson Education,		
	2016		
T4	Operating Systems – Internals and Design Principles, 7th Edition, William Stallings,		
	Prentice Hall, 2011		
R1	Modern Operating Systems, Second Edition, Andrew S. Tanenbaum, Addison Wesley,		
	2001.		
R2	Operating Systems: A Design-Oriented Approach, Charles Crowley, TMH Education.		

R3	Operating Systems: A Concept-based Approach, Second Edition, D M Dhamdhere,	
	Tata McGraw-Hill Education, 2007	
R4	Operating Systems: Internals and Design Principles, Seventh Edition, William	
	Stallings, Prentice Hall, 2011	
W1	https://www.coursera.org/courses?query=operating%20system	
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview	

Course C	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate knowledge on Computer System organization and Operating system		
	services		
CO2	Design solutions for process synchronization problems by using System calls and Inter		
COZ	process communication.		
CO3	Identify the functionality involved in process management concepts like scheduling and		
COS	synchronization.		
CO4	Design models for handling deadlock and perform memory management.		
CO5	Analyze services of I/O subsystems and mechanisms of security & protection.		

	UI Design		
(PRO	GRAM ELECTIVE-I)		
Subject Code	18ITITP504A	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: The User Interface			Hours
The User Interface: Introduction, It and benefits of Good Design History of Graphical and Web User Interface graphics, concepts of Direct Manidisadvantage, Characteristics of GU Characteristics of Web Interface, M Web, Principles of User Interface Design Theorem 1985.	of Human Computer Intace: Graphical User Integration, Graphical Sy UI. Web User Interface lerging of Graphical Buign	erface. Characteristics terface, popularity of ystem advantage and a, popularity of web,	12
Unit -2: The User Interface Design	Process		
The User Interface Design Process: Obstacles and Pitfall in the development Process, Usability, The Design Team, Human Interaction with Computers, Important Human Characteristics in Design, Human Consideration in Design, Human Interaction Speeds, Performance versus Preference, Methods for Gaining and Understanding of Users			10
Unit – 3: Understanding Business F	unctions		
Understanding Business Functions: E Determining Business Functions, I Training and Documentation			10
Unit – 4: Principles of Good Screen	Design & Menus and M	Navigation Schemes	
Principles of Good Screen Design interface design goals, test for a Technological considerations in Inter Schemes: Structure, Functions, Co Navigating of Menus, Kinds of Graph	good design, screen m face Design System Montext, Formatting, Phr	eaning and purpose, enus and Navigation	10
Unit – 5: Windows Interface			
Windows Interface: Windows chara Presentation Styles, Types of Window			8

Text books		
1. Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley India Edition		
2. Prece, Rogers, "Sharps Interaction Design", Wiley India.		
3. Ben Shneidermann,"Designing the user interfaces". 3rd Edition, Pearson Education Asia.		
References		
1. Soren Lauesen, "User Interface Design", Pearson Education		
2. Alan Cooper, Robert Riemann, David Cronin, "Essentials of Interaction Design", Wiley		
3. Alan Dix, Janet Fincay, GreGoryd, Abowd, Russell, Bealg,"HumanComputer		
Interaction",Pearson Education		
Web References		
W1: http://nptel.ac.in/courses/106101061/38		
W2: http://www.informit.com/articles/article.aspx?p=30306		

W3. http://www.slideshare.net/ivarslide/new-microsoft-office-power-point-presentation-17056594

Course Outcomes: On completion of this course, students can		
CO1	Define interfaces, and GUI's	
CO2	Identify the design of user interface process models and methods	
CO3	Understanding the business tools and requirements	
CO4	Classify of menus and graphical menus and navigation menus	
CO5	Ability to communicate and apply window interface components	

ARTIFICI	AL INTELLIGENCE		
(PROGR	RAM ELECTIVE-I)		
Subject Code	18ITITP504B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03	I	<u> </u>
Unit -1: Introduction to artificial into	elligence		Hours
Introduction, history, intelligent system	ms, foundations of AI,	applications, tic-	ΛQ
tac-tie game playing, development of a	i languages, current tre	nds in AI.	08
Unit -2: Problem solving: state-space	e search and control st	rategies	
Problem solving: state-space search	h and control strateg	ies: Introduction,	
general problem solving, characteristic	s of problem		10
Search Strategies: exhaustive searche	es, heuristic search tech	nniques, iterative-	10
deepening A*, constraint satisfaction			
Unit – 3: Logic concepts			
Introduction, propositional calculus,	proportional logic, 1	natural deduction	
system, axiomatic system, semantic tableau system in proportional logic,			10
resolution refutation in proportional logic, predicate logic.			
Unit – 4: Knowledge Representation			
Knowledge representation: Intro	oduction, approaches	to knowledge	
representation, knowledge representa	tion using semantic n	etwork, extended	
semantic networks for KR			10
Advanced knowledge representation techniques: Introduction, conceptual			
dependency theory, script structure			
Unit – 5: Expert system and applicat	tions		
Expert system and applications:	Introduction phases in	building expert	
systems, expert system versus tradition	onal systems, rule-base	ed expert systems	12
blackboard systems truth maintenance systems, application of expert systems,			12
list of shells and tools.			

Text(T) / Reference(R) Books:		
T1	Artificial Intelligence- Saroj Kaushik, CENGAGE Learning,	
T2	Artificial intelligence, A modern Approach , 2nd ed, Stuart Russel, Peter Norvig,	
	PEA	

T3	Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair, 3rd ed, TMH	
T4	Introduction to Artificial Intelligence, Patterson, PHI	
R1	Atificial intelligence, structures and Strategies for Complex problem solving, -	
	George FLugar, 5 th ed, PEA	
R2	Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer	
R3	Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier	

Cours	Course Outcomes: On completion of this course, students can		
CO1	O1 Describe about problem spaces and list out various search strategies.		
CO2	Identify and trace the different search algorithms.		
CO3	Summarize different learning methods used in artificial intelligence.		
CO4	Make use of resolution and unification for discovering new facts from existing		
	knowledge base		
CO5	Explain about the significance of expert systems in artificial intelligence.		

DATABASE MANAGEMENT SYSTEMS LAB				
Subject Code	18ITITL5060	IA Marks	15	
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

Credits – 1.5

List of Experiments

SQL

Exercise1

Queries to facilitate acquaintance of Built-In Functions, String Functions, Numeric Functions, Date Functions and Conversion Functions.

Exercise2:Queries using operators in SQL

Exercise3: Queries to Retrieve and Change Data: Select, Insert, Delete, and Update

Exercise4

Queries using Group By, Order By, and Having Clauses

Exercise5

Queries on Controlling Data: Commit, Rollback, and Save point

Exercise6

Queries for Creating, Dropping, and Altering Tables, Views, and Constraints

Exercise 7

Queries on Joins and Correlated Sub-Queries

Exercise8

Queries on Working with Index, Sequence, Synonym, Controlling Access, and Locking Rows for Update, Creating Password and Security features

PL/SQL

Exercise9

Write a PL/SQL Code using Basic Variable, Anchored Declarations, and Usage of Assignment Operation

Exercise10

Write a PL/SQL Code Bind and Substitution Variables. Printing in PL/SQL

Exercise11

Write a PL/SQL block using SQL and Control Structures in PL/SQL

Exercise12

Write a PL/SQL Code using Cursors, Exceptions and Composite Data Types

Exercise13

Write a PL/SQL Code using Procedures, Functions, and Packages

Exercise14

Write a PL/SQL Code Creation of forms for any Information System such as Student Information System, Employee Information System etc. 18

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand, appreciate and effectively explain the underlying concepts of database		
COI	technologies.		
CO2 Design and implement a database schema for a given problem-domain, Normalize			
CO2	database		
CO3	Populate and query a database using SQL DML/DDL commands.		
CO4	Declare and enforce integrity constraints on a database using a state-of-the-art		
C04	RDBMS		
CO5	Programming PL/SQL including stored procedures, stored functions, cursors,		
003	packages		

OPERATING SYSTEMS LAB				
Subject Code	18ITITL5070	IA Marks	15	
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

Credits - 1.5

List of Experiments

Exercise1

Simulate the following CPU scheduling algorithms

- a) Round Robin
- b) SJF
- c) FCFS
- d) Priority

Exercise2

Loading executable programs into memory and execute system call implementation for read(), write(), open(), and close().

Exercise3

Implement fork(), wait(), exec() and exit() system calls.

Exercise4

Simulate the following file allocation strategies

- a) Sequenced
- b) Indexed and
- c) Linked

Exercise5

Simulate MVT and MFT

Exercise6

Simulate the following File Organization Techniques

- a) Single Level Directory
- b) Two Level
- c) Hierarchical
- d) DAG

Exercise7

Simulate Bankers Algorithm for Deadlock Avoidance

Exercise 8

Simulate Bankers Algorithm for Deadlock Prevention

Exercise9

Simulate the following page replacement algorithms

a) FIFO b)LRU c)LFU

Exercise 10 Simulate Paging Technique of memory management.

Course	Course Outcomes: On completion of this course, students can		
CO1	Analyze different CPU Scheduling algorithms		
CO2	Apply various system calls to handle memory tasks		
СОЗ	Apply various File Organization Techniques		
CO4	Design models for handling deadlock and perform memory management.		
CO5	Analyze various page replacement techniques		

Soft Skills	& Aptitude Builder –	1	
Subject Code	18CMAHS5080	IA Marks	15
Number of Lecture Hours/Week	03(P)	Exam Marks	35
Total Number of Lecture Hours	36	Exam Hours	03
	Credits - 2		
Sect	ion A - Soft Skills		
Unit – 1: Intrapersonal Communicati	on		Hours
Introduction to Soft Skills and its Signif			
Personal Effectiveness: Who am I	and What am I; M	ly Strengths and	
Weaknesses; SWOT Analysis; SMART Goal Setting; Being Proactive			
Principles of Personal Vision: Beginni	ng with the End in Min	d;	6
Time Management: Understanding Prior			
Activity: Psychometric Tests and SWO			
Unit 2: Interpersonal Communication	•		
Principles of Creative Cooperation an		: Think Win-Win;	
Seek First to Understand then to be Und	_		
Emotional Intelligence :	Self-Awareness,	Self-Regulation,	
Empathy, Assertiveness, Adoptability, M	Inaging Emotions	,	6
Activity: Resolving a Conflict with		/Family Member;	
Group Discussions & Debates		,	
Unit – 3: 21 st Century Skills			
What are 21st Century Skills? Learning	ng Skills- Digital Liter	acv- Life Skills	
Critical Thinking: Active Listening,			
Thinking, Open Mindedness	,	,	
Problem Solving: Understanding the O	Complexity of the Prob	lem, Defining the	
Problem, Cause and Effect Analysis, Exploring Possible Solutions, Planning			
Actions, Analyzing Results of your Actions, Getting Feedback, Redefining the			6
Problem, The Problem Solving Cycle	, &	,	
Decision Making: Managing Conflict,	Conflict Resolution, Mo	ethods of Decision	
Making, Effective Decision Making in Teams – Methods & Styles			
Activity: Case Study			
Section B- Aptitude Builder			
Unit – 4: Ratios & Percentages			
Definition of Ratio, Properties of Ratio	ios, Comparison of Ra	tios, Problems on	
Ratios, Compound Ratio, Problems on Proportion, Mean Proportional and			
Continued Proportion.			
Partnership: Introduction, Relation between Capitals, Period of Investments and			
Shares			
Number System: Classification of Numbers, Divisibility Rules, Finding the			
Units Digit, Finding Remainders in Divisions Involving Higher Powers, LCM			
and HCF Models			7
Percentages: Introduction, Converting a Percentage into Decimals, Converting a			
Decimal into Percentage, Percentage Equivalent of Fractions, Problems on			
Percentages			
Profit And Loss: Problems on Profit and Loss Percentage, Relation between			
	and Loss Percentage,	Relation between	
Cost Price and Selling Price, Discount a			
	and Marked Price, Two	Different Articles	

Problems on Ages: Introduction, Problems based on Ages	
Averages: Definition of Average, Rules of Average, Problems on Average,	
Problems on Weighted Average, Finding Average using Assumed Mean Method	
Alligation and Mixture: Problems on Mixtures, Alligation Rule, Problems on	
Alligation	
Unit – 5: Mental Ability	
Difference Series, Product Series, Squares Series, Cubes Series, Alternate Series	
Combination Series, Miscellaneous Series, Place Values of Letters	
Number and Letter Analogies: Definition of Analogy, Problems on Number	
Analogy, Problems on Letter Analogy, Problems on Verbal Analogy	
Odd Man Out: Problems on Number Odd Man Out, Problems on Letter Odd	
Man Out, Problems on Verbal Odd Man Out	
Coding and Decoding: Coding using Same Set of Letter, Coding using Different	7
Set of Letters, Coding into a Number, Problems on R-Model	/
Blood relations: Defining the Various Relations among the Members of a	
Family, Solving Blood Relation Puzzles, Solving the Problems on Blood	
Relations using Symbols and Notations	
Direction Sense: Solving Problems by Drawing the Paths, Finding the Net	
Distance Travelled, Finding the Direction, Problems on Clocks ,Problems on	
Shadows	

Section	Section-A: Text (T) / Reference (R) Books:				
For Un	For Units 1, 2, & 3				
T1	English and Soft Skills, Dr. S. P. Dhanvel, Orient Blackswan, 2011				
R1	Seven Habits of Highly Effective People, Stephen R Covey				
R2	Emotional Intelligence, Daniel Goleman, Bantom Book, 2006				
R3	21 st Century Skills: Learning for Life in our Times, Bernie Trilling, Charles Fadel; John Wiley & Sons				
For Un	its 4&5				
T1	S Agarwal, S Chand, 'Quantitative Aptitude'				
T2	Agarwal, S.Chand, 'A Modern Approach to Logical Reasoning'				
R1 Quantitative Aptitude for CAT By Arun Sharma					
R2	Barrons, Mc Graw Hills, Thorpe's Verbal Reasoning, LSAT Materials				
Course	Outcomes: On completion of this course, students can				
Section	A: Soft Skills				
CO1	Re-engineer attitude and understand its influence on behavior				
CO 2					
Develop holistic personality with a mature outlook to function effectively i					
003	different circumstances				
Section	B: Aptitude Builder				
CO 4	Solve the real-time problems for performing job functions easily				
CO 5	CO 5 Analyze the problems logically and critically				

Subject Code 18CMBIN5090 IA Marks 30 Number of Lecture Hours/Week 2 Exam Marks 70 Total Number of Lecture Hours 30 Exam Hours 03 Total Number of Lecture Hours 30 Exam Hours 04 Total Number of Lecture Hours 30 Exam Hours 05 Unit -1: Introduction Hours Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification				
Number of Lecture Hours/Week 2 Exam Marks 70 Total Number of Lecture Hours 30 Exam Hours 03 Exam Hours Unit -1: Introduction Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2: Classification				
Unit -1: Introduction Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2: Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Unit -2: Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Unit -2:Classification Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit - 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit - 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Plant Hierarchy of life forms at phenomenological level- classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
(d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Melanogaster, C. elegance, A. Thaliana, M. Musculus Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Unit – 3:Genetics & Biomolecules Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
about the single gene disorders in humans. Discuss the concept of complementation using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
using human genetics. Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Unit – 4:Enzymes & Proteins Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme				
catalyze reactions - Enzyme classification. Mechanism of enzyme action				
· · · · · · · · · · · · · · · · · · ·				
examples. Enzyme kinetics and kinetic parameters. Why should we know these				
parameters to understand biology? RNA catalysis. Proteins - structure and function. Hierarch in protein structure. Primary secondary,				
tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and				
structural elements.				
Unit – 5:Microbiology & Metabolism				
Thermodynamics as applied to biological systems - Exothermic and endothermic				
versus undergone and exergoinc reactions. Concept of K_{eq} and its relation to				
standard free energy - Spontaneity - ATP as an energy currency. This should				
include the breakdown of glucose to $CO_2 + H_2O$ (Glycolysis and Krebs cycle) and				
synthesis of glucose from CO ₂ and H ₂ O (Photosynthesis). Energy yielding and				
energy consuming reactions. Concept of Energy charge.				

Text(Text(T) / Reference(R) Books:				
T1	Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.;				
11	Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd				
T2	Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John				
12	Wiley and Sons				
T3	Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C.				
13	Brown Publishers				
R1	Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H.				
N1	Freeman and Company				
Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Free					
R2	company, Distributed by Satish Kumar Jain for CBS Publisher				
W1	https://ocw.mit.edu/courses/biological-engineering/				
W2	https://onlinecourses.nptel.ac.in/noc16_ge03/preview				

Cours	Course Outcomes: On completion of this course, students can				
CO1	Describe how biological observations of 18th Century that lead to major discoveries.				
CO2	Convey that classification is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological.				
CO3	Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring				
CO4	Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine				
CO5	Classify enzymes and distinguish between different mechanisms of enzyme action, To convey that "Genetics is to biology what Newton's laws are to Physical Sciences"				

Department of Information Technology Detailed Syllabus

VI SEMESTER (III-II)

ENGINEERING ECONOM	IICS & FINANCIAL N	MANAGEMENT		
Subject Code	18CMMST6010	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	70	
Total Number of Lecture Hours	60	Exam Hours	03	
	Credits – 03			
Unit -1: Introduction to Managerial	Economics and deman	d Analysis	Hours	
Definition of Managerial Economics and	1 0			
relation with other subjects-Concepts of	• 1		14	
Demand its Exception-Elasticity of De	mand-Types and Measu	rement- Demand	14	
forecasting and its Methods.				
Unit -2:Production and Cost Analysi				
Production function-Isoquants and Isoquants				
Douglas Production Function-Econom			12	
Cost-Fixed vs Variable Costs-Explicit Costs vs Implicit Costs- Cost Volume				
Profit analysis- Determination of Break				
Unit – 3:Introduction To Markets, P	ricing Policies & form	s Organizations a	nd	
Business Cycles				
Market Structures: Perfect Competit		-		
Oligopoly - Features - Price, Output				
Market Skimming Pricing, And Internet Pricing: Flat Rate Pricing. Features and				
Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public				
Enterprises and their forms – Business Cycles – Meaning and Features – Phases				
of Business Cycle	0.774			
Unit – 4:Introduction to Accounting				
Introduction to Double Entry Systems	-		12	
Analysis and Interpretation of Financial Statements-Ratio Analysis –				
Preparation of Funds flow cash flow st	` .	ems)		
Unit – 5:Capital and Capital Budget	ing			
Capital Budgeting: Meaning of Cap				
Budgeting-Need for Capital Budget	ing-Techniques of Ca	pital Budgeting-	12	
Traditional and Modern Methods.				

Text	t(T) / Reference(R) Books:
T1	Managerial Economics and Financial Analysis, Dr. A. R. Aryasri, TMH 2011.
T2	Managerial Economics and Financial Analysis, 1/e, B. Kuberadu, HPH, 2013
Т3	Management Science, Dr. P. Vijaya Kumar & Dr. N. Apparao, Cengage, Delhi, 2012
T4	Management Science, Dr. A. R. Arya Sri, TNH, 2011.
R1	Financial Accounting for Management, Ambrish Gupta, Pearson Education, New
	Delhi.
R2	Managerial Economics, 4th Ed, H. Craig Peterson & W. Cris Lewis, PHI.
R3	Essentials of management, Koontz and weihrich, TMH 2011
R4	Global management systems, Seth& Rastogi, Cengage learning, delhi, 2011
R5	Managerial Economics, V. Maheswari, Sultan Chand
R6	Managerial Economics & Financial Analysis, Dr. B. Kuberudu and Dr. T. V.
	Ramana, Himalaya Publishing House 2011.

W1	https://www.coursera.org/courses?query=financial%20engineering
W2	https://www.mooc-list.com/categories/economics-finance

Cour	Course Outcomes: On completion of this course, students can		
CO1	Identify the managerial economics and demand for a product.		
CO2	Differentiate the Production and Cost concepts, estimating Cost Break even Analysis.		
CO3	Describe the Markets and Pricing methods along with Business Cycles.		
CO4	Calculate Accounting Concepts and Prepare Financial Statements- Analysis		
CO5	Analyze various investment project proposals with the help of Capital Budgeting techniques.		

Data Warehousin	g and Data Mining			
Subject Code	18ITITT6020	IA Marks	3	30
Number of Lecture Hours/Week	3	Exam Ma	rks	70
Total Number of Lecture Hours	50	Exam Ho	urs	03
Cred	its – 03			
Unit -1: Data Warehouse and OLAP Techn	ology		Ho	urs
Data Warehouse and OLAP Technology: Warehouse? A Multidimensional Data Model Warehouse Implementation, From Data W &Kamber)	l, Data Warehouse Archi	tecture, Data	0	8
Unit -2: Data Mining:				
Data Mining: Introduction, What is Data Mining?, Motivating challenges, The origins of Data Mining, Data Mining Tasks, Types of Data, Data Quality. Data Preprocessing: Aggregation, Sampling, Dimensionality Reduction, Feature Subset Selection, Feature creation, Discretization and Binarization, Variable Transformation, Measures of Similarity and Dissimilarity. (Tan & Vipin)		10	0	
Unit – 3: Classification				
Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute testconditions, measures for selecting the best split, Algorithm for decision tree induction. Model Overfitting: Due to presence of noise, due to lack of representation samples, evaluating the performance of classifier: holdout method, random sub sampling, cross-validation, bootstrap. Bayes Theorem, Naïve Bayes Classifier (Tan & Vipin)		10	0	
Unit – 4: Association Analysis				
Association Analysis: Basic Concepts and Frequent Item Set Generation, Apriori I Generation, Compact Representation of Frequent & Vipin)	Principle, Apriori Algo	orithm, Rule	10	0
Unit – 5: Cluster Analysis				
Cluster Analysis: Basic Concepts and Algo Analysis? Different Types of Clustering, Di The Basic K-means Algorithm, K-means A Strengths and Weaknesses; Agglomerativ Agglomerative Hierarchical Clustering Algorith &Vipin)	fferent Types of Cluste additional Issues, Bisective Hierarchical Clusterithm DBSCAN: Traditi	rs; K-means: ng K-means, ering: Basic onal Density	11	2

Text(T) / Reference(R) Books:
T1	Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar,
	Fifth Impression, Pearson, 2015.
T2	Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber,
	Elsevier, 2011
R1	1. Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage
	Learning, 2010
R2	Data Mining: Introductory and Advanced topics: Dunham, First Edition, Pearson,
	2020
R3	Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH, 2008
R4	Data Mining Techniques, Arun K Pujari, Universities Press, 2001
W1	https://onlinecourses.nptel.ac.in/noc18_cs14/preview

Course Outcomes: On completion of this course, students can		
CO1	Summarize the architecture of data warehouse	
CO2	Apply different pre-processing methods, Similarity, Dissimilarity measures for any given raw data.	
CO3	Illustrate a decision tree and resolve the problem of model over fitting	
CO4	Differentiate Apriori and FP-growth association rule mining algorithms for frequent item set generation	
CO5	Apply suitable clustering algorithm for the given data set	

COMPUTER NETWORKS			
Subject Code	18ITITT6030	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Introduction			Hours
Network Topologies, WAN, LAN, MAN. OSI Reference Model, TCP/IP Reference Model, Multiplexing (Frequency Division, Wavelength Division, Synchronous Time Division and Statistical Time Division Multiplexing Techniques), Switching Techniques (Circuit-switching, Datagram, Virtual Circuit Networks).			08
Unit -2:The Data Link Layer			
Design Issues, Services Provided to the Network Layer, Framing, Error Control, Flow Control, Error Detection and Correction, Error Correcting Codes, Error Detecting Codes, A Simplex Stop and Wait Protocol for an Error free channel, A Simplex Stop and Wait Protocol for a Noisy Channel, Sliding Window Protocols (A One Bit Sliding Window Protocol-A Protocol Using Go-Back-NA Protocol Using Selective Repeat), Data Link Layer in HDLC: Configuration and transmission modes, frames, control fields.		10	
Unit – 3:The Medium Access Control Sub layer			
The Channel Allocation Problem, Static Channel Allocation, Assumptions for Dynamic Channel Allocation, Multiple Access Protocols (Aloha, Carrier Sense Multiple Access Protocols, Collision-Free Protocols, Limited Contention Protocols, Wireless LAN Protocols).		10	
Unit – 4: Routing Algorithms			
Routing Algorithms- Shortest-Path Routing, Flooding, Hierarchical routing, Broadcast, Multicast and Distance Vector Routing.		10	
Unit – 5: Congestion Control			
Congestion Control Algorithms, Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding, IP Addressing, Classless and Class full Addressing, Sub-netting. Application Layer:The Domain Name System- The DNS Name Space, Resource Records, Name Servers, Electronic Mail Architecture and Services, The User Agent, Message Formats, Message Transfer, Final Delivery.		12	

Text	Text(T) / Reference(R) Books:		
T1	Computer Networks, 5th Edition, Tanenbaum and David J Wetherall, Pearson Edu, 2010.		
T2	Computer Networks: A Top Down Approach, Behrouz A. Forouzan, FirouzMosharraf, McGraw Hill Education.		
Т3	Computer Networks, Mayank Dave, CENGAGE		
T4	Data and Computer Communications, Fifth Edition, William Stallings, PHI, 2005.		
R1	Computer Networks, A Systems Approach, Fifth Edition, Peterson & Davie, Harcourt, 2011.		
R2	Network Management Standards, Second Edition, Ulysses Black, McGraw Hill, 1994		
R3	Computer Networking - A Top-down Approach, Sixth Edition, James F. Kurose, Keith W. Ross, Pearson, 2013.		
R4	Computer Networks - A Systems Approach, 5th ed, Larry L. Peterson and Bruce S. Davie, Morgan Kaufmann/ Elsevier, 2011		
W1	https://swayam.gov.in/courses/5172-computer-networks		
W2	https://www.coursera.org/courses?query=computer%20network		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Illustrate the concept of network reference models and classification of multiplexing.		
CO2	Explain the design issues and various protocols of data link layer.		
CO3	Interpret the use of medium access control sub layer.		
CO4	Analyze various routing algorithms.		
CO5	Experiment with congestion control algorithms and to illustrate the concept of domain name system.		

SOFTWARE ENGINEERING			
Subject Code	18ITITT6040	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Software and Software Eng	ineering		Hours
Introduction to Software Engineering: The Nature of Software, The Unique Nature of Web Apps, Software Engineering, Software Process, Software Engineering Practice, Software Myths. Process Models: A Generic Process Model, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Product and Process, Process Terminology, Process Assessment and Improvement.		10	
Unit -2: Software Requirements & I	Design		
Requirements Analysis and Specification: Requirements Gathering and Analysis, Software Requirement Specification (SRS), Formal System Specification. Overview of the Design Process: How to Characterize a Design, Cohesion and Coupling, Layered Arrangement of Modules, Approaches to Software Design. Function-Oriented Software Design: Overview of SA/SD Methodology, Structured analysis, Developing the DFD Model of a System, Structured Design, Detailed Design, Design Review, overview of Object-Oriented design.		12	
Unit – 3: Coding and Testing			
Coding: Coding Principles, Coding Standards, Code Review, Software Documentation Testing: Unit Testing, Integration Testing, System Testing, Black-Box Testing, White-Box Testing, Debugging, Program Analysis Tool, Testing Object-Oriented Programs, Some General Issues Associated with Testing.		10	
Unit – 4: Software Reliability and Quality Management & CASE			
Software Reliability: Reliability, Statistical Testing, Software Quality: Software Quality Management System, ISO 9000, SEI Capability Maturity Model. Computer Aided Software Engineering: CASE and its Scope, CASE Environment, CASE Support in Software Life Cycle, Other Characteristics of CASE tools, Towards Second Generation CASE Tool, Architecture of a CASE Environment.		10	

Unit – 5: Software Maintenance	
Software Maintenance: Maintenance Process Models, Maintenance Cost, Software Configuration Management. Software Reuse: what can be reused? Why Almost No Reuse So Far? Basic Issues in Reuse Approach, Reuse at organization Level.	08

Text	Text(T) / Reference(R) Books:		
T1	Software engineering A practitioner's Approach, Roger S. Pressman, Seventh Edition		
	McGrawHill International Edition.		
T2	Fundamentals of Software Engineering, Third Edition, Rajib Mall, PHI.		
T3	Software Engineering, Ian Sommerville, Ninth edition, Pearson education		
T4	Software Engineering, Concepts and Practices, Ugrasen Suman, Cengage Learning		
R1	Software Engineering A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008		
R2	Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.		
R3	Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press		
R4	Software Engineering1: Abstraction and modeling, Diner Bjorner, Springer		
	International edition, 2006.		
R5	Software Engineering concepts, R. Fairley, TMH.		
W1	https://www.edx.org/learn/software-engineering		
W2	https://www.coursera.org/courses?query=software%20engineering		

Cours	Course Outcomes: On completion of this course, students can	
CO1	Define and develop software applications using different process models.	
CO2	Describe the various design concepts to build real world software.	
CO3	Interpret various coding and testing Techniques	
CO4	Illustrate the Quality measures, Reliability Metrics and CASE Tools	
CO5	CO5 Describe need of maintenance and reuse activities	

R PROGRAMMING (PROGRAM ELECTIVE-II)				
Subject Code	18ITITP605A	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
Cre	dits – 03	•		
Unit -1: Introduction			Hours	
How to run R, R Sessions and Funct Types, Vectors, Conclusion, Advanced D Matrices, Arrays, Classes.			10	
Unit -2: R Programming Structures, Con	trol Statements, L	oops		
Looping Over Nonvector Sets,- If-Else, And values, Default Values for Argument, Rexplicitly call return- Returning Complex Pointers in R, Recursion, A Quicksort Example: A Binary Search Tree.	eturn Values, Dec Objects, Functions	iding Whether to are Objective, No	12	
Unit – 3: Math and Simulation in R				
Doing Math and Simulation in R, Calculating Probability- Cumulative MaximaCalculus, Functions Fir Statistical Operation on Vectors and Matrices, ProductExtended Example: Finding Statio Set Operation, Input /output, Accessing the writer Files	Sums and Produce Distribution, Sorting Extended Examponary Distribution of the Summer	ucts-Minima and ag, Linear Algebra le: Vector cross of Markov Chains,	10	
Unit – 4: Graphics& Basic Statistics				
Creating Graphs , The Workhorse of R Customizing Graphs, Saving Graphs to F Covariance, T-Tests,-ANOVA.	<u> </u>	± "	10	
Unit – 5: Distributions Linear Models				
Distribution- Binomial Distribution - Poi Simple Linear Regression, -Multiple Reg Logistic Regression, - Poisson Regressio Survival Analysis,	gression Generalize	d Linear Models,	08	

Text(Text(T) / Reference(R) Books:	
T1	The Art of R Programming, Norman Matloff, Cengage Learning	
T2	R for Everyone, Lander, Pearson	
R1	R Cookbook, PaulTeetor, Oreilly.	
R2	R in Action,RobKabacoff, Manning	
W1	https://www.edx.org/learn/r-programming	
W2	https://www.coursera.org/learn/r-programming	

Course	Course Outcomes: On completion of this course, students can		
CO1	List motivation for learning a programming language		
CO2	Discuss resources for R and import new function packages into the R Workspace		
CO3	Demonstrate Import, review, manipulate and summarize data-sets in R		
CO4	Use appropriate statistical tests using R Create and edit visualizations		
CO5	ustrate data-sets to create testable hypotheses and identify appropriate		
CO3	statistical test		

	E QUALITY ASSURAN	NCE	
· ·	18ITITP605B	IA Marks	30
Subject Code Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Viai Ks Exam Hours	03
Total Number of Decture Hours	Credits – 03	Exam Hours	03
Unit -1: Introduction To Software			Hour s
Need for Software quality – Quality (SQA) – Definition and objectives – model – SQA system and architecture. Pre project quality components – Developments –	 Software quality factor Software Project life 	s- McCall's quality cycleComponents –	10
Unit -2: SQA Components and Pro	ject Life Cycle		
Software Development methodolog development process- Verification & – Software Testing implementations Maintenance of software quality Software maintenance quality – Project	Validation – Reviews – s – Quality of software components – Quality	Software Testing maintenance – Pre-	10
Unit - 3: Software Quality Infrast	tructure		
Procedures and work instructions – Staff training and certification Corre management – Software change co Documentation control – Storage and	ective and preventive action on trol — Configuration n	ons – Configuration	08
Unit – 4: Software Quality Manag	gement & Metrics		
Project process control – Computeriz Objectives of quality measurement – Implementation – Limitations of soft Classical quality cost model – Extend	Process metrics – Produc ware metrics – Cost of so	t metrics – ftware quality –	10
Unit – 5: Standards, Certification	s & Assessments		
Quality management standards – ISO – CMM and CMMI – Bootstrap met – IEEE st 1012 & 1028 – Organi management responsibilities – Proj and other actors in SQA systems	thodology –SQA project partition of Quality Assur-	process standards ance – Department	12

Text	Text(T) / Reference(R) Books:		
T1	"Software Quality Assurance, Daniel Galin, Pearson Publication, 2009		
T2	"Software Quality: Theory and Management, Alan C. Gillies, International Thomson Computer Press		
R1	"Software Quality: Producing Practical Consistent Software", Mordechai Ben- Menachem International Thompson Computer Press, 1997		
R2	"Metrics and Models in Software Quality Engineering", Stephen H Khan Pearson Education, Second Edition, 2004		
W1	https://www.coursera.org/courses?query=software%20testing		
W2	https://www.coursera.org/courses?query=quality%20assurance		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Describe the basic concepts in SQA, challenges and SQA system architecture		
CO2	Explain SQA components and maintenance activities.		
CO3	Choose the corrective actions to assess the quality of software product.		
CO4	Apply the metrics involved in software development		
CO5	CO5 Develop the concepts in preparing the quality plan & documents		

Software Engineering Lab				
Subject Code 18ITITL6070 IA Marks 15				
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

Credits – 1.5

List of Experiments

Exercise 1

Do the Requirement Analysis and Prepare SRS

Exercise 2

Using COCOMO model estimate effort.

Exercise3

Calculate effort using FP oriented estimation model.

Exercise 4

Analyze the Risk related to the project and prepare RMMM plan.

Exercise 5

Develop Time-line chart and project table using PERT or CPM project scheduling methods.

Exercise 6

Draw E-R diagrams, DFD, CFD and structured charts for the project.

Exercise 7

Design of Test cases based on requirements and design.

Exercise 8

Prepare FTR

Exercise 9

Prepare Version control and change control for software configuration items.

Exercise 10

Design Software interface

Exercise 11

Mini Project

Course	Course Outcomes: On completion of this course, students can	
CO1	Interpret on preparing SRS document	
CO2	Determine the cost of the project.	
CO3	Classify ER and DFD Diagrams	
CO4	Illustrate the test cases for the user specification.	
CO5	Operate various versions of software for customization	

DATA MINING USING PYTHON LAB			
Subject Code 18ITITL6080 IA Marks 15			
Number of Tutorial Hours/Week	03(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03

Credits - 1.5

List of Experiments

List of Experiments:

- 1. Demonstrate the following data preprocessing tasks using python libraries
- a) Loading the dataset
- b) Identify the dependent and independent variables
- c) Dealing with missing data
- 2. Demonstrate the following data preprocessing tasks using python libraries
- a) Dealing with categorical data
- b) Scaling the features
- c) Splitting dataset into training and testing sets
- 3. Demonstrate the following similarity and dis similarity measures using python.
- a) Pearson's correlation
- b) Cosine similarity
- c) Jaccard similarity
- d) Euclidean Distance
- e) Manhattan Distance
- 4. Build a model using linear regression algorithm on any dataset
- 5. Build a classification model using decision tree algorithm on iris dataset
- 6. Apply naïve bayes classification algorithm on any dataset
- 7. Generate frequent item sets using Apriori algorithm in python and also generate Association rules for any market basket data.
- 8. Apply K-means clustering algorithm on any dataset.
- 9. Apply high hierarchical clustering algorithm on any dataset.
- 10. Apply DBSCAN clustering algorithm on any dataset.

Cours	Course Outcomes: On completion of this course, students can	
CO1	Apply data mining algorithms on different datasets	
CO2	Apply preprocessing techniques on real world datasets	
CO3	Apply apriori algorithm to generate frequent itemsets	
CO4	Apply classification algorithms on different datasets	
CO5	Apply clustering algorithms on different datasets	

Soft Skills	s & Aptitude Builder	- 2	
Subject Code	18CMAHS6090	IA Marks	15
Number of Lecture Hours/Week	03(P)	Exam Marks	35
Total Number of Lecture Hours	36	Exam Hours	03
	Credits - 2	-	
Sec	tion A, Soft Skills		
Unit – 1: Communicative Competenc	ee		Hours
Verbal Reasoning: Reading Comp	orehension-Text Com	pletion- Sentence	
EquivalenceSpotting Errors, Sequencin	g of Sentences, Parallel	lism in Structure	6
E-Mail Etiquette, Reporting NewsActiv	vity: Completing Exerci	ises	
Unit 2: Career and Employability Sk	ills		
What is a Career: Career vs Job, Car	reer Values & Grid, S	Skills vs Strengths,	
Spotting Skills/Reflection of Present	Skills, Meeting the E	xpectation of your	
Employer, Matching your Skills with	the Required Skills,	Preparing Resume,	6
Preparing for Interviews & Structuring	Answers		
Activity: Resume Building, Interviews			
Section B, A	ptitude Builder		
Unit – 3: Time and Work			
Pipes and Cisterns: Problems on Unit	ary method, Relation b	etween Men, Days,	
Hours and Work, Problems on Man-D	ay-Hours Method, Pro	blems on Alternate	
Days, Problems on Pipes and Cisterns.			
Time, Distance and Speed, Prob	lems on Trains, Boa	ats and Streams:	
Relation between Speed, Distance and	Time, Converting km/	h into m/s and vice	
versa, Problems on Average Speed, P	Problems on Relative S	peed, Problems on	6
Circular Tracks, Problems on Races			U
Problems on Trains: Two Trains Mo			
Moving in same Direction, A Train			
Length like a Platform or Bridge, A			
Pole or a Man Boats and Streams: T	,		
Point Object Speed Based, Distance Ba	sed, Average Speed Ba	sed	
Unit – 4: Logical and Analytical Reas	soning		
Seating Arrangement: Linear Arran	ngement, Circular Arr	rangement, Tabler,	
Triangular Arrangement, Complex Arra	<u> </u>		
Clocks: Finding the Angle When the T			
Angle is Known, Relation between A	_		
Hands of the Clock, Time Gained or I	Lost by the Clock, Mi	rror /Water Image-	
based Time.			
Calendars: Definition of a Leap Y		•	
Framing the Year Code for Centuries,	_ ,		7
Date Syllogisms: Finding the Conclusion		m Method, Finding	
the Conclusions using Syllogism Metho			
Simple Interest: Definitions, Problems		int, Problems when	
Rate of Interest and Time Period are Nu			
Compound Interest: Definition and Fo		-	
Difference between Simple Interest an	d Compound Interest	for 2 Years on the	
Same Principle and Time Period.			
Unit – 5: Permutations, Probability, A			
Definition of permutation, Proble	ems on Permutations	, Definition of	7

Combinations, problems on Combinations

Probability: Definition of Probability, Problems on Coins, Problems on Dice,
Problems on Deck of Cards, Problems on Years

Mensuration - 2D:Formulas for Areas, Formulas for Volumes of Different
Solids, Problems on Areas

Mensuration - 3D: Problems on Volumes, Problems on Surface Areas

Text (1	Text (T) / Reference (R) Books:		
For Un	For Units 1 & 2		
T1	Enhance Your Employability Skills, David Winter and Laura Brammar, University		
	of London		
T2	R.S. Agarwal, Verbal & Non-Verbal Reasoning, S. Chand & Co., Latest ed. 2003		
R2	How to Prepare for Verbal Ability and Reading Comprehension, Arun Sharma,		
	Meenakshi Upadhay, Mc Graw Hill		
For Units 3, 4, & 5			
T1	S Agarwal, S Chand, 'Quantitative Aptitude'		
T2	S Agarwal, S.Chand, 'A modern approach to Logical reasoning'		
R1	Quantitative Aptitude for CAT By Arun sharma		
R2	Barrons, Mc Graw Hills, Thorpe's verbal reasoning, LSAT Materials		

Course Outcomes: On completion of this course, students can			
Section A	Section A: Soft Skills		
CO 1	learn and practice effective communication skills		
CO 2	develop broad career plans, evaluate the employment market, and become		
	industry ready		
Section B	Section B: Aptitude Builder		
CO 3	develop accuracy on time and distance and units related solutions		
CO 4	solve the real-time problems for performing job functions easily		
CO 5	solve problems related to permutations and combinations, probability, areas and		
	volumes		

Department of Information Technology Detailed Syllabus

VII SEMESTER (IV-I)

MACHINE LEARNING			
Subject Code	18ITITT7010	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits – 03

Course Objectives:

The learning objectives of this course are:

- 1. Familiarity with a set of well-known supervised, unsupervised and semi-supervised learning algorithms.
- 2. The ability to implement some basic machine learning algorithms.
- 3. Understanding of how machine learning algorithms are evaluated.

3. Understanding of how machine learning algorithms are evaluated.		
Unit -1: The ingredients of machine learning, Tasks	Hours	
The problems that can be solved with machine learning, Models: the output of machine learning, Features, the workhorses of machine learning. Binary classification and related tasks: Classification, Scoring and ranking, Class probability estimation. Beyond binary classification: Handling more than two classes, Regression, Unsupervised and descriptive learning.	09	
Unit -2 :Concept learning		
The hypothesis space, Paths through the hypothesis space, Beyond conjunctive concepts. Tree models: Decision trees, Ranking and probability estimation trees, Tree learning as variance reduction. Rule models: Learning ordered rule lists, Learning unordered rule sets, Descriptive rule learning, First-order rule learning.	10	
Unit – 3:Linear models		
The least-squares method, The perceptron: a heuristic learning algorithm for linear classifiers, Support vector machines, obtaining probabilities from linear classifiers, Going beyond linearity with kernel methods. Distance Based Models: Introduction, Neighbors and exemplars, Nearest Neighbors classification, Distance Based Clustering, Hierarchical Clustering.	10	
Unit – 4:Probabilistic models		
The normal distribution and its geometric interpretations, Probabilistic models for categorical data, Discriminative learning by optimizing conditional Likelihood Probabilistic models with hidden variables. Features: Kinds of feature, Feature transformations, Feature construction and selection. Model ensembles: Bagging and random forests, Boosting.	10	
Unit – 5:Dimensionality Reduction		
Principal Component Analysis (PCA), Implementation and demonstration. Artificial Neural Networks: Introduction, Neural network representation, appropriate problems for neural network learning, Multilayer networks and the back-propagation algorithm.	11	

Text	Text(T) / Reference® Books:		
T1	Machine Learning: The art and science of algorithms that make sense of data,Peter		
	Flach, Cambridge.		
T2	Machine Learning, Tom M.Mitchell, MGH		
R1	Understanding Machine Learning: From Theory to algorithms, Shai Shalev-		
	Shwartz, Shai Ben-David, Cambridge.		
R2	Machine Learning in Action, Peter Harington, 2012, Cengage		
W1	https://www.tutorialspoint.com/what-is-machine-learning		
W2	https://www.analyticsvidhya.com/machine-learning/		
W3	https://www.youtube.com/watch?v=eq7KF7JTinU		

Course	Course Outcomes: On completion of this course, students can		
CO1	Student should be able to understand the classification and its types and problems solved by ML.		
CO2	Student should be able to illustrate hypothesis space, decision trees and First order rule learning.		
CO3	Student should be able to apply different classifires like SVM, KNN and Clustering techniques.		
CO4	Student should be able to apply classifiers like Naïve bayes, random forest.		
CO5	Student should be able to compare different dimensionality reduction techniques.		

	ED DATABASES ELECTIVE-III)			
Subject Code	ject Code 18ITITP702A IA Marks		5	30
Number of Lecture Hours/Week	3	Exam Ma	rks	70
Total Number of Lecture Hours	50	Exam Ho	urs	03
Cred	lits – 03			
Unit -1: Introduction :			Ho	urs
Introduction : Distributed Data processing, Distributed database system (DDBMS), Promises of DDBMSs, Complicating factors and Problem areas in DDBMSs, Overview Of Relational DBMS Relational Database concepts, Normalization		0	8	
Unit -2 : Distributed DBMS Architecture:				
Distributed DBMS Architecture: DBMS Standardization, Architectural models for Distributed DBMS, Distributed DBMS Architecture. Distributed Database Design: Alternative design Strategies, Distribution design issues, Fragmentation, Allocation. Semantic Data Control: View Management, Data security, Semantic Integrity Control		10	0	
Unit -3: Overview of Query Processing				
Overview of Query Processing: Query pro Processing, Complexity of Relational Algebra processors, Layers of Query Processing.	0 1	-	10	0
Unit – 4: Introduction to Transaction Man	agement			
Introduction to Transaction Management of transaction, types of transaction Distribut theory Taxonomy of concurrency control m control algorithms.	ed concurrency control: Seri	ializability	10	0
Unit – 5: Parallel Database Systems				
Parallel Database Systems: Database server techniques parallel execution problems, architecture			12	2

Tex	Text(T) / Reference(R) Books:		
T1	Principles of Distributed Database Systems, Second Edition, M. Tamer Ozsu Patrick Valduriez		
T2	Distributed Databases principles and systems, Stefano Ceri, Giuseppe pelagatti, Tata McGrawHill		
R1	Distributed Databases Principles & Systems", Stefano Ceri, Giuseppe Pelagatti ", McGraw-Hill.		
R2	Distributed database systems, M.TamerOzsu, Patrick Valduriez, , 2nd Edition, Prentice Hall of India, New Delhi.		
W1	https://www.coursera.org/learn/distributed-database		
W2	https://www.ntnu.edu/studies/courses/DT8103		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Efficient retrieval from database and query.		
CO2	Discuss the architecture of distributed database design		
CO3	Describe the relational algebra operations.		
CO4	Explain the parallelization of various operations.		
CO5	Analyze the distributed object database management systems		

BIG	DATA ANALYTICS		
(PRO	GRAM ELECTIVE-III)		
Subject Code	18ITITP702B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		•
Unit -1			Hours
Hadoop Distributed File System Basics, Running Example Programs and Benchmarks, Hadoop MapReduce Framework, MapReduce Programming			10
Unit -2			
Essential Hadoop Tools, Hadoop YARN Applications, Managing Hadoop with Apache Ambari, Basic Hadoop Administration Procedures			10
Unit – 3			
Business Intelligence Concepts and Application, Data Warehousing, Data Mining, Data Visualization			10
Unit – 4			
Decision Trees, Regression, Artificial Neural Networks, Cluster Analysis, Association Rule Mining			10
Unit – 5			
Text Mining, Naïve-Bayes Analysi Social Network Analysis	s, Support Vector Machi	nes, Web Mining,	10

Text	Text(T) / Reference(R) Books:		
T1	"Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Douglas Eadline		
T2	Computing in the Apache Hadoop, "Data Analytics", 1stEdition, Pearson Education, 2016. Anil Maheshwari, "Data Analytics", 1stEdition, McGraw Hill Education, 2017.		
R1	"Hadoop: The Definitive Guide "Tom White, O'Reilly Media, 2015.ISBN-13: 978-9352130672		
R2	"Professional Hadoop Solutions", Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, ", 1st Edition, Wrox Press, 2014 ISBN-13: 978-8126551071		
R3	"Hadoop Operations: A Guide for Developers and Administrators", Eric Sammer, O'Reilly Media, 2012.ISB		
W1	https://www.coursera.org/courses?query=big%20data%20analytics		
W2	https://www.edx.org/learn/big-data		

Course	Course Outcomes: On completion of this course, students can		
CO1	Master the concepts of HDFS and MapReduce framework		
CO2	Investigate Hadoop related tools for Big Data Analytics and perform basic Hadoop Administration		
CO3	Recognize the role of Business Intelligence, Data warehousing and Visualization indecision making		
CO4 Infer the importance of core data mining techniques for data analytics			
CO5	Understand various applications of text mining		

SOFTWARE PROJECT MANAGEMENT (PROGRAM ELECTIVE-IV)				
Subject Code	18ITITP703A	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	arks 70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03			
Unit -1: Introduction			Hours	
Project, Management, Software Project Management activities, Challenges in software projects, stake holders, objectives & goals. Project Planning: Stepwise planning, Project scope, Project products & deliverables, Project activities, Effort estimation, Infrastructure. Project Approach: Life cycle models, choosing technology, prototyping, life cycle phases, process artefacts, process work flows.		0- et e		
Unit -2 :Effort estimation & Activity Planning				
Estimation techniques, Function point analysis, SLOC, COCOMO, Usecase-based estimation, Activity identification approaches, network planning models, critical path analysis.				
Unit – 3:Risk management				
Risk categories, Identification, Assessment, Planning and management, PERT technique, Monte Carlo approach.		Т 10		
Unit – 4:Project Management and	Control		•	
Creating framework for monitoring monitoring, Earned value analysis, reports, Types of resources, Ident scheduling.	defects tracking, issu	ies tracking, statu	10	
Unit – 5:Software Quality			•	
Planning quality, defining quality – quality management planning, process tatistical process control capabilit quality.	duct quality & proce	ss quality metric	S, 12	

Tex	Text(T) / Reference(R) Books:		
T1	Software Project Management, Bob Hughes & Mike Cotterell, TATA Mc Graw-Hill		
T2	Software Project Management, Walker Royce: Pearson Education, 2005		
Т3	T3 Software Project Management in practice, Pankaj Jalote, Pearson		
R1	Software Project Management, Joel Henry, Pearson Education		

Cours	Course Outcomes: On completion of this course, students can		
CO1	To match organizational needs to the most effective software development model		
CO2	To describe basic concepts and issues of software project management		
CO3	To effectively plan and implement the projects through managing people		
CO4	CO4 To effectively plan and implement the projects through communication and change.		
CO5	O5 To select and employ mechanisms for tracking the software projects		

SOFTWARE TESTING METHODOLOGIES			
(PROGRAM ELECTIVE-IV)			
Subject Code	18ITITP703B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction:			
Purpose of Testing, Dichotomies, M	odel for Testing, Level	s of Testing ,Basic	
definitions, Software Testing Princ	iples, The Tester's Re	ole in a Software	
Development, Consequences of Bugs,	Taxonomy of Bugs.		10
Flow graphs and Path testing:			
Basics Concepts of Path Testing, P			
Paths, Path Sensitizing, Path Instrume	ntation, Applications of	Path Testing.	
Unit -2			
Transaction Flow Testing:			
Transaction Flows, Transaction Flow	Testing Techniques.		
Dataflow testing:		08	
Basics of Dataflow Testing, Strategies in Dataflow Testing, Application of			
Dataflow Testing			
Unit – 3			
Paths and Regular expressions: Path Expression, Reduction Procedur	a Applications Pagula	r Evpressions &	
Flow Anomaly Detection.	c, Applications, Regula	1 Expressions &	
Syntax Testing:			10
Grammar for formats, Test Case Generation, Implementation and Application and			
Testability Tips			
Unit – 4		,	
Logic Based Testing:			
Overview, Decision Tables, KV Chart			
State, State Graphs and Transition	- C		
State Graphs, Good & Bad State Grap	hs, State Testing, and Te	estability Tips.	12
Graph Matrices and Application:-			
Motivational overview, matrix of gra	aph, relations, power of	f a matrix, node	
reduction algorithm.			
Unit – 5			
Software Testing Tools:		, , , , , , , , , , , , , , , , , , , ,	
Introduction to Testing, Automated 7		·	40
needed for automation, scope of	•		10
Introduction to testing tools like V	viii ruiiiier, Load Kun	ner, selenium and	
working with selenium			

Text	Text(T) / Reference(R) Books:	
T1	"Software testing techniques" – Boris Beizer, Dream tech, second edition.	
T2	"Software Testing"- Yogesh Singh, Camebridge	
R1	"The Craft of software testing" - Brian Marick, Pearson Education.	
R2	"Software Testing", N.Chauhan, Oxford University Press.	
R3	"Introduction to Software Testing", P.Ammann&J.Offutt, Cambridge Univ.Press.	
R4	"Effective methods of Software Testing", Perry, John Wiley, ^{2nd} Edition, 1999.	
R5	"Foundations of Software Testing", D.Graham, Cengage Learning	
W1	https://www.coursera.org/courses?query=software%20testing	
W2	https://www.edx.org/course/software-testing-fundamentals-usmx-umuc-stv1-1x-4	

Cour	Course Outcomes: On completion of this course, students can:	
CO1	CO1 Discuss basic software testing terminology, concepts of path testing andapplications.	
CO2	Discuss Data flow testing and transaction flow testing methods	
CO3	Implement and generate test cases in syntax testing	
CO4	Develop test cases and test suites by using different testing methods	
CO5	Analyze the applications manually by applying different testing methods in stategraphs and transition testing	

CRYPTOGRAPHY & NETWORK SECURITY			
(PROF	ESSIONAL ELECTIVE-V)		
Subject Code	18ITITP704A	IA Marks	30
Number of Lecture Hours/Week	3	Exam Mark	s 70
Total Number of Lecture Hours	50	Exam Hours	s 03
	Credits – 03		
Unit -1: Basic Principles			Hours
Security Goals, Cryptographic Attac	cks, Services and Mechanisms, Ma	athematics of	
Cryptography, Symmetric Encr	yption: Mathematics of Sym	metric Key	0.0
Cryptography, Introduction to Mod	lern Symmetric Key Ciphers, Data	a Encryption	08
Standard, Advanced Encryption Standard.			
Unit -2: Asymmetric Encryption			
Mathematics of Asymmetric Key Cı	yptography, Asymmetric Key Cryp	otography.	10
Unit – 3: Data Integrity, Digital Si	gnature Schemes & Key Manage	ment	
Message Integrity and Message A	authentication, Cryptographic Has	h Functions,	10
Digital Signature, Key Management.		10	
Unit – 4: Network Security-I			
Security at application layer: PGP a	nd S/MIME, Security at the Transp	ort Layer:	10
SSL and TLS.		10	
Unit – 5: Network Security-II			
Security at the Network Layer: IPSe	c, System Security.		12

Text	Text(T) / Reference(R) Books:		
T1	Cryptography and Network Security, Behrouz A Forouzan, Debdeep Mukhopadhyay,		
	(3e) Mc Graw Hill.		
T2	Cryptography and Network Security, William Stallings, (6e) Pearson.		
T3	Everyday Cryptography, Keith M.Martin, Oxford.		
R1	Network Security and Cryptography, Bernard Meneges, Cengage Learning.		
R2	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech.		
W1	https://onlinecourses.nptel.ac.in/noc19_cs28/preview		
W2	https://www.coursera.org/learn/crypto		

Cour	Course Outcomes: On completion of this course, students can		
CO1	To be Summarize with information security awareness and a clear understanding of		
	its importance.		
CO2	To Summarize fundamentals of secret and public cryptography		
CO3	To Describe master protocols for security services		
CO4	To be Summarize with network security threats and countermeasures		
CO5	To be Summarize with network security designs using available secure solutions (such		
	as PGP, SSL, IPSec, etc).		

CI	OUD COMPUTING		
CLOUD COMPUTING (PROGRAM ELECTIVE-V)			
Subject Code	18ITITP704B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: INTRODUCTION			Hours
Where Are We Today, What Is Clo			
Private vs. Public Clouds, Bu	isiness Drivers for C	loud Computing,	
Introduction to Cloud Technologies.			10
INFRASTRUCTURE AS A SERV			10
Services, Compute as a Service: A	*	Cloud (EC2), HP	
Cloud System Matrix, Cells-as-a-Se Unit -2: PLATFORM AS A SERV			
		: M	
Windows Azure, A "Hello World		_	
Azure Test and Deployment, Tech Programming Model, Using Azure		· ·	
Challenges, Designing Pustak Port	_	_	10
asa Service: Storage Aspects, Apach		Eligine, Tiatroini	10
SOFTWARE AS A SERVICE: C	• •	force.com. Social	
Computing Services, Document Ser		10100100111, 0001111	
Unit – 3: PARADIGMS FOR DEVELOPING CLOUD APPLICATIONS			
Scalable Data Storage Technique	es, MapReduce Revisite	ed, Rich Internet	
Applications.	, 1	,	
ADDRESSING THE CLOUD CH	ALLENGES: Scaling Co	omputation, Scale	
Out versus Scale Up, Amdahl's	Law, Scaling Cloud Ap	plications with a	
Reverse Proxy, Hybrid Cloud and	0 1		4.0
Storage, CAP Theorem, Implement			10
SQL Systems, Multi-Tenancy, M			
Authentication, Implementing Multi-			
Multi-Tenancy in Salesforce.com, N	Aulti-Tenancy and Securit	y	
in Hadoop. Unit – 4: DESIGNING CLOUD	SECURITY		
		Counity Vietnal	
Cloud Security Requirements and Security, Risk Management, Risk		•	10
Process, Security Design Patterns,		_	10
Network Patterns, Common Manag	<u>-</u>	•	
for a PaaS System, Security Arch		•	
Regulatory Issues, Selecting a G			
Evaluation Frameworks.			
Unit – 5: MANAGING THE CL	OUD		
Managing IaaS, Managing Paa	S, Managing SaaS, C	Other Cloud-	
ScaleManagement Systems,			
RELATED TECHNOLOGIES:	Server Virtualization,	1	10
Hypervisors, Storage Virtualizatio	n, Grid Computing, Ot	her Cloud-Related	
Technologies.			

Text	Text(T) / Reference(R) Books:		
T1	Moving to the Cloud:Developing Apps in the New World of Cloud Computing,		
	Dinkar Sitaram, GeethaManjunath, 1stEdition, Elsevier,2012		
R1	"Cloud Computing Bible" Barrie Sosinsky ,1stEdition,Wiley India Pvt Ltd, 2011		
R2	"Cloud Computing: A Practical Approach", Robert Elsenpeter, Toby J. Velte,		
	Anthony T. Velte, ", 1st Edition, TataMcGraw Hill Education, 2011		
W1	https://www.edx.org/learn/cloud-computing		
W2	https://www.coursera.org/courses?query=cloud%20computing		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Summarize importance of cloud computing in real world.		
CO2	Identify applications that can be integrated using cloud services.		
CO3	Evaluate cloud-based applications.		
CO4	Understand the security issues in cloud services.		
CO5	Identify the cloud services managing		

Machine Learning Lab			
Subject Code	18ITITL7070	IA Marks	15
Number of Tutorial Hours/Week	03(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03

Credits – 1.5

List of Experiments

Experiment-1:

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .csv file.

Experiment-2:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Experiment-3:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Experiment-4:

Exercises to solve the real-world problems using the following machine learning methods: a) Linear Regression b) Logistic Regression c) Binary Classifier

Experiment-5:

Develop a program for Bias, Variance, Remove duplicates, Cross Validation

Experiment-6:

Write a program to implement Categorical Encoding, One-hot Encoding

Experiment-7:

Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.

Experiment-8:

Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions.

Experiment-9:

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Experiment-10:

Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Experiment-11:

Apply EM algorithm to cluster a Heart Disease Data Set. Use the same data set for Clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Experiment-12:

Exploratory Data Analysis for Classification using Pandas or Matplotlib.

Additional Experiment

Write a Python program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set

Course	Course Outcomes: On completion of this course, students can		
CO1	Implement procedures for the machine learning algorithms		
CO2	Design and Develop Python programs for various Learning algorithms		
CO3	Apply appropriate data sets to the Machine Learning algorithms		
CO4	Develop Machine Learning algorithms to solve real world problems		
CO5	Apply various Cluster and classifications based algorithms.		

OBJECT ORIENTED ANALYSIS AND DESIGN LAB			
Subject Code	18ITITL7080	IA Marks	15
Number of Tutorial Hours/Week	03(P)	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03

Credits – 1.5

List of Experiments

Exercise1

Familiarization with Rational Rose or Umbrello

Exercise2

- Identify and analyze events
- Identify Use cases
- Develop event table

Exercise3

- Identify & analyze domain classes
- Represent use cases and a domain class diagram using Rational Rose
- Develop CRUD matrix to represent relationships between use cases and problem domain classes.

Exercise4

- Develop Use case diagrams
- Develop elaborate Use case descriptions & scenarios.

Exercise5

- Develop prototypes (without functionality)
- Develop system sequence diagrams.

Exercise6

- Develop high-level sequence diagrams for each use case
- Identify MVC classes / objects for each use case

Exercise7

Develop Detailed Sequence Diagrams / Communication diagrams for each use case showing interactions among all the three-layer objects.

Exercise8

- Develop detailed design class model (use GRASP patterns for responsibility assignment)
- Develop three-layer package diagrams for each case study

Exercise 9

- Develop Use case Packages
- Develop component diagrams.

Exercise10

- Identify relationships between use cases and represent them
- Refine domain class model by showing all the associations among classes

Exercise11

Develop sample diagrams for other UML diagrams - state chart diagrams, activity diagrams and deployment diagrams

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand the Case studies and design the Model.		
CO2	Develop different Structural diagrams for an application.		
CO3	Design different Behavioral diagrams for the project		
CO4	Develop different Component diagrams for a real world problem.		
CO5	Construct Deployment diagrams for the developed applications		

MEAN Stack Technologies (HTML 5, JAVASCRIPT, EXPRESS.JS, NODE.JS AND TYPESCRIPT)				
Subject Code 18ITITS7090 IA Marks 15				
Number of Lecture hours/Week	4	Exam Marks	35	
Total Number of Lecture Hours	48	Exam Hours	3	
Credits -2				

List	of Exercises		
	Course Name: HTML5 - The Language		
	Module Name: Case-insensitivity, Platform-independency, DOCTYPE Declaration,		
	Types of Elements, HTML Elements - Attributes, Metadata Element		
1.a	Include the Metadata element in Homepage.html for providing description as "IEKart's		
	is an online shopping website that sells goods in retail. This company deals with		
	various categories like Electronics, Clothing, Accessories etc.		
	Course Name: HTML5 - The Language		
1 h	Module Name: Sectioning Elements		
1.b	Enhance the Homepage.html of IEKart's Shopping Application by adding appropriate		
	sectioning elements.		
	Course Name: HTML5 - The Language		
1.0	Module Name: Paragraph Element, Division and Span Elements, List Element		
1.c	Make use of appropriate grouping elements such as list items to "About Us" page of		
	IEKart's Shopping Application		
	Course Name: HTML5 - The Language		
	Module Name: Link Element		
1.d	Link "Login", "SignUp" and "Track order" to "Login.html", "SignUp.html" and		
	"Track.html" page respectively. Bookmark each category to its details of IEKart's		
	Shopping application.		
	Course Name: HTML5 - The Language		
1.e	Module Name: Character Entities		
	Add the © symbol in the Home page footer of IEKart's Shopping application.		
	Course Name: HTML5 - The Language		
1.f	Module Name: HTML5 Global Attributes		
1.1	Add the global attributes such as content editable, spell check, id etc. to enhance the		
	Signup Page functionality of IE Kart's Shopping application.		
2.a	Course Name: HTML5 - The Language		
	Module Name: Creating Table Elements, Table Elements: Colspan/Rowspan		
	Attributes, border, cell spacing, cell padding attributes		
	Enhance the details page of IEKart's Shopping application by adding a table element		
	to display the available mobile/any inventories.		
2.b	Course Name: HTML5 - The Language		
	Module Name: Creating Form Elements, Color and Date Pickers, Select and Datalist		
	Elements		
	Using the form elements create Signup page for IEKart's Shopping application.		
2.c	Course Name: HTML5 - The Language		
	Module Name: Input Elements – Attributes		
	Enhance Signup page functionality of IEKart's Shopping application by adding		

List	of Exercises
List	attributes to input elements.
	Course Name: HTML5 - The Language
	Module Name: Media, Iframe
2.d	Add media content in a frame using audio, video, iframe elements to the Home page
	of IEKart's Shopping application.
3.a	Course Name: Javascript
J.a	Module Name: Type of Identifiers
	Write a JavaScript program to find the area of a circle using radius (var and let-
	reassign and observe the difference with var and let) and PI (const)
2 h	
3.b	Course Name: Javascript Madula Name: Drimitive and Nan Primitive Data Transa
	Module Name: Primitive and Non Primitive Data Types
	Write JavaScript code to display the movie details such as movie name, starring,
	language, and ratings. Initialize the variables with values of appropriate types. Use
	template literals wherever necessary.
2 -	Course Name: Javascript
3.c	Module Name: Operators and Types of Operators
	Write JavaScript code to book movie tickets online and calculate the total price,
	considering the number of tickets and price per ticket as Rs. 150. Also, apply a festive
	season discount of 10% and calculate the discounted amount.
	Course Name: Javascript
	Module Name: Types of Statements, Non - Conditional Statements, Types of
3.d	Conditional Statements, if Statements, switch Statements
· · · ·	Write a JavaScript code to book movie tickets online and calculate the total price based
	on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per ticket
	remains Rs. 150. (b) If seats are 6 or more, booking is not allowed.
	Course Name: Javascript
2	Module Name: Types of Loops
3.e	Write a JavaScript code to book movie tickets online and calculate the total price
	based on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per
	ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed.
	Course Name: Javascript Madula Name: Types of Fynations Deslaring and Invaling Fynation Agents
	Module Name: Types of Functions, Declaring and Invoking Function, Arrow
4 -	Function, Function Parameters, Nested Function, Built-in Functions, Variable Scope
4. a	inFunctions Write a Leve Sprint and a to be all marris tickets and a claylets the total price.
	Write a JavaScript code to book movie tickets online and calculate the total price
	based on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per
	ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed.
4.b	Course Name: Javascript Madula Name: Working With Classes Creating and Inhariting Classes
4.0	Module Name: Working With Classes, Creating and Inheriting Classes Create an Employee class extending from a base class Person. Hints: (i) Create a class
	1 •
	Person with name and age as attributes. (ii) Add a constructor to initialize the values
	(iii) Create a class Employee extending Person with additional attributes role
4.c	Course Name: Javascript Module Name: In-built Events and Handlers
4.0	
	Write a JavaScript code to book movie tickets online and calculate the total price
	based on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per
	ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed.
4.d	Course Name: Javascript Modulo Name: Working with Objects, Types of Objects, Creating Objects
+.u	Module Name: Working with Objects, Types of Objects, Creating Objects,

T !-4 .	g E
List (of Exercises
	Combining and cloning Objects using Spread operator, Destructuring Objects,
	Browser Object Model, Document Object Model
	If a user clicks on the given link, they should see an empty cone, a different heading,
	and a different message and a different background color. If user clicks again, they
	should see a re-filled cone, a different heading, a different message, and a different
	back ground color
	Course Name: Javascript
	Module Name: Creating Arrays, Destructuring Arrays, Accessing Arrays, Array
5.a	Methods
J.a	Create an array of objects having movie details. The object should include the movie
	name, starring, language, and ratings. Render the details of movies on the page using
	the array.
	Course Name: Javascript
	Module Name: Introduction to Asynchronous Programming, Callbacks, Promises,
	Async and Await, Executing Network Requests using Fetch API
<i>5</i> L	Simulate a periodic stock price change and display on the console. Hints: (i) Create a
5.b	method which returns a random number - use Math.random, floor and other methods
	to return a rounded value. (ii) Invoke the method for every three seconds and stop
	When random value is zero.
	Course Name: Javascript
	Module Name: Creating Modules, Consuming Modules
_	Validate the user by creating a login module. Hints: (i) Create a file login.js with a
5.c	User class. (ii) Create a validate method with username and password as arguments.
	(iii) If the username and password are equal it will return "Login Successful" else will
	return "Login is Failure".
	Course Name: Node.js
6.a	Module Name: How to use Node.js
0.4	Verify how to execute different functions successfully in the Node.js platform.
	Course Name: Node.js
	Module Name: Create a web server in Node.js
6.b	Write a program to show the workflow of JavaScript code executable by creating web
	server in Node.js.
	Course Name: Node.js
6.c	Module Name: Modular programming in Node.js
0.0	Write a Node.js module to show the workflow of Modularization of Node application.
6.d	Course Name: Node.js
0.0	Module Name: Restarting Node Application
	Write a program to show the workflow of restarting a Node application.
	Course Name: Node.js
	Module Name: File Operations
6.e	Create a text file src.txt and add the following data to it. Mongo, Express, Angular,
0.0	Node.
	Course Name: Express.js
	Module Name: Defining a route, Handling Routes, Route Parameters, Query
	Parameters
7.a	Implement routing for the AdventureTrails application by embedding the necessary
	code in the routes/route.js file.
	Course Name: Express.js
7.b	Module Name: How Middleware works, Chaining of Middlewares, Types of
7.0	ribudic frame. How which ware works, channing of which ewares, 1 ypes of

List	of Exercises				
LIST					
	Middlewares L. N. C.				
	In myNotes application: (i) we want to handle POST submissions. (ii)display				
	customized error messages. (iii) perform logging.				
	Course Name: Express.js				
	Module Name: Connecting to MongoDB with Mongoose, Validation Types and				
7.c	Defaults				
	Write a Mongoose schema to connect with MongoDB.				
	https://infyspringboard.onwingspan.com/web/en/viewer/web-				
	module/lex_auth_013035588775485440691_shared?collectionId=lex_324078356719				
	46760000_shared&collectionType=Course				
	Course Name: Express.js				
7.1	Module Name: Models				
7.d	Write a program to wrap the Schema into a Model object.				
	Course Name: Express.js				
	Module Name: CRUD Operations				
8.a	Write a program to perform various CRUD (Create-Read-Update-Delete) operations				
	using Mongoose library functions.				
	Course Name: Express.js				
	Module Name: API Development				
	In the myNotes application, include APIs based on the requirements provided. (i) API				
8.b					
0.0	should fetch the details of the notes based on a notes ID which is provided in the URL.				
	Test URL - http://localhost:3000/notes/7555 (ii) API should update the details based on				
	input notes ID				
	Course Name: Express.js				
8.c	Module Name: Why Session management, Cookies				
	Write a program to explain session management using cookies.				
	Course Name: Express.js				
8.d	Module Name: Sessions				
	Write a program to explain session management using sessions.				
	Course Name: Express.js				
0	Module Name: Why and What Security, Helmet Middleware				
8.e					
	Implement security features in myNotes application				
	Course Name: Typescript				
	Module Name: Basics of TypeScript				
9.a	On the page, display the price of the mobile-based in three different colors. Instead of				
J.a	using the number in our code, represent them by string values like GoldPlatinum,				
	PinkGold, SilverTitanium.				
	Course Name: Typescript				
	Module Name: Function				
0 h	Define an arrow function inside the event handler to filter the product array with the				
9.b	selected product object using the productId received by the function. Pass theselected				
	product object to the next screen.				
	Course Name: Typescript				
	Module Name: Parameter Types and Return Types				
9.c	Consider that developer needs to declare a function - getMobileByVendor which				
-	accepts string as input parameter and returns the list of mobiles.				
	Course Name: Typescript				
	Module Name: Arrow Function				
9.d	Consider that developer needs to declare a manufacturer's array holding 4 objects with				
	Consider that developer needs to declare a manufacturer's array holding 4 objects with				

List	of Exercises		
	id and price as a parameter and needs to implement an arrow function - myfunction to		
	populate the id parameter of manufacturers array whose price is greater than or equal to		
	100.		
	Course Name: Typescript		
	Module Name: Optional and Default Parameters		
	Declare a function - getMobileByManufacturer with two parameters namely		
9.e	manufacturer and id, where manufacturer value should passed as Samsung and id		
	parameter should be optional while invoking the function, if id is passed as 101 then		
	this function should return the name of manfacturer		
	Course Name: Typescript		
	Module Name: Rest Parameter		
10.a	Implement business logic for adding multiple Product values into a cart variable which		
	is type of string array.		
	Course Name: Typescript		
	Module Name: Creating an Interface		
10.b	Declare an interface named - Product with two properties like productId and		
10.0	productName with a number and string datatype and need to implement logic to		
	populate the Product details.		
	Course Name: Typescript		
	Module Name: Duck Typing		
10.c	Declare an interface named - Product with two properties like productId and		
	productName with the number and string datatype and need to implement logicto		
	populate the Product details.		
	Course Name: Typescript		
10.d	Module Name: Function Types		
	Declare an interface with function type and access its value.		
	Course Name: Typescript Module Name: Extending Interfaces		
	Declare a productList interface which extends properties from two other declared		
11.a			
	interfaces like Category, Product as well as implementation to create a variable of this		
	interface type. Course Name: Typescript		
	Module Name: Classes		
11 b	Consider the Mobile Cart application, Create objects of the Product class and place		
110	them into the productlist array.		
	Course Name: Typescript		
	Module Name: Constructor		
	Declare a class named - Product with the below-mentioned declarations: (i) productId		
11.c	as number property (ii) Constructor to initialize this value (iii) getProductId method to		
	return the message "Product id is < <id value="">>".</id>		
	Course Name: Typescript		
	Module Name: Access Modifiers		
11.d	Create a Product class with 4 properties namely productId,		
	productName, productPrice, productCategory with private, public, static,		
	and protectedaccess		
	modifiers and accessing them through Gadget class and its methods.		
	Course Name: Typescript		
	Module Name: Properties and Methods		
12.a	Create a Product class with 4 properties namely productId and methodsto		
	setProductId() and getProductId().		

List o	List of Exercises			
	Course Name: Typescript			
	Module Name: Creating and using Namespaces			
12.b	Create a namespace called ProductUtility and place the Product class definition in it.			
	Import the Product class inside productlist file and use it.			
	Course Name: Typescript			
	Module Name: Creating and using Modules			
12.c	Consider the Mobile Cart application which is designed as part of the functions in a			
12.0	module to calculate the total price of the product using the quantity and price values			
	and assign it to a totalPrice variable.			
	Course Name: Typescript			
	Module Name: What is Generics, What are Type Parameters, Generic Functions,			
12.d	Generic Constraints			
	Create a generic array and function to sort numbers as well as string values.			

Text(T) / Reference(R) Books:
T1	Pro Mean Stack Development, 1st Edition, ELadElrom, ApressO'Reilly.
T2	Full Stack JavaScript Development with MEAN, Colin J Ihrig, Adam Bretz, 1st edition, SitePoint, SitePoint Pty. Ltd., O'ReillyMedia.
R1	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1stEdition, DreamTech.
R2	An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, Sanda S Katila, Cengage Learning.
W1	https://infyspringboard.onwingspan.com/en/app/toc/lex_17739732834840810000_sha red/overview (HTML5)
W2	https://infyspringboard.onwingspan.com/en/app/toc/lex_18109698366332810000_sha red/overview (Javascript)
W3	https://infyspringboard.onwingspan.com/en/app/toc/lex_32407835671946760000_sha red/overview (Node.js &Express.js)
W4	https://infyspringboard.onwingspan.com/en/app/toc/lex_943623311651267800 0_shared/overview(Typescript)

Course	Course Outcomes: On completion of this course, students can	
CO1	Develop professional web pages of an application using HTML elements like lists,	
	navigations, tables, various form elements, embedded media which includes images,	
	audio, video and CSS Styles.	
CO2	Utilize JavaScript for developing interactive HTML web pages and validate form.	
CO3	Build a basic web server using Node.js and also working with Node Package	
	Manager(NPM).	
CO4	Build a web server usingExpress.js	
CO5	Make use of Typescript to optimize JavaScript code by using the concept of strict	
	type checking.	

Open Elective Courses Offered by All the Departments

Open Elective Courses Offered by Civil to other Departments

S.No	Subject Code	Subject
1	18XXCEOXXXX	Civil Engineering-Societal & Global Impact
2	18XXCEOXXXX	Introduction to Civil Engineering
3	18XXCEOXXXX	Disaster Management
4	18XXCEOXXXX	Environmental Pollution and control
5	18XXCEOXXXX	Building Materials
6	18XXCEOXXXX	Green Buildings and sustainability

CIVIL ENGINEERING -SOCIETAL & GLOBAL IMPACT			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits = 03			

Course Objectives:

- Awareness of the importance of Civil Engineering and the impact it has on the Society and at global levels
- Awareness of the impact of Civil Engineering for the various specific fields of human endeavour
- Need to think innovatively to ensure Sustainability

Unit -1	Hours
Understanding the importance of Civil Engineering in shaping and impacting the world; The ancient and modern Marvels and Wonders in the field of Civil	09
Engineering; Future Vision for Civil Engineering	09
Unit -2	
Infrastructure - Habitats, Megacities, Smart Cities, futuristic visions; Transportation (Roads, Railways & Metros, Airports, Seaports, River ways, Sea	10
canals, Tunnels (below ground, under water); Futuristic systems (ex, Hyper Loop)); Energy generation (Hydro, Solar (Photovoltaic, Solar Chimney), Wind, Wave, Tidal, Geothermal, Thermal energy)	10
Unit – 3	
Environment- Traditional & futuristic methods; Solid waste management, Water purification, Wastewater treatment & Recycling, Hazardous waste treatment; Flood control (Dams, Canals, River interlinking), Multi-purpose water projects, Atmospheric pollution; Global warming phenomena and Pollution Mitigation measures, Stationary and non- stationary; Environmental Metrics & Monitoring; Other Sustainability measures; Innovations and methodologies for ensuring Sustainability.	10
Unit – 4	
Built environment – Facilities management, Climate control; Intelligent/ Smart Buildings; Aesthetics of built environment, Role of Urban Arts Commissions; Conservation, Repairs & Rehabilitation of Structures	09
Unit-5	
Civil Engineering Projects – Environmental Impact Analysis procedures; Waste (materials, manpower, equipment) avoidance/ Efficiency increase; Advanced construction techniques for better sustainability; Techniques for reduction of Green House Gas emissions in various aspects of Civil Engineering Project	10

Course outcomes:

On completion of this course, students are able to:

- 1. Understand the role of Civil Engineering in Modern World
- 2. Understand various constructional Infrastructure and their importance in present environment
- 3. Interpret modern transportation systems and their advantages
- 4. Effect of global Warming and mitigation measures
- 5. Understand the importance of Sustainability and Reduction of Green House Gas Emission

TEXT BOOKS

- 1. Žiga Turk (2014), Global Challenges and the Role of Civil Engineering, Chapter 3 in: Fischinger M. (eds) Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society. Geotechnical, Geological and Earthquake Engineering, Vol. 32. Springer, Dordrecht
- 2. Brito, Ciampi, Vasconcelos, Amarol, Barros (2013) Engineering impacting Social, Economical and Working Environment, 120th ASEE Annual Conference and Exposition
- 3. NAE Grand Challenges for Engineering (2006), Engineering for the Developing World, The Bridge, Vol 34, No.2, Summer 2004.

- 1. Allen M. (2008) Cleansing the city. Ohio University Press. Athens Ohio.
- 2. Ashley R., Stovin V., Moore S., Hurley L., Lewis L., Saul A. (2010). London Tideway Tunnels Programme Thames Tunnel Project Needs Report Potential source control and SUDS applications: Land use and retrofit options
- 3. http://www.thamestunnelconsultation.co.uk/consultation-documents.aspx
- 4. Ashley R M., Nowell R., Gersonius B., Walker L. (2011). Surface Water Management and Urban Green Infrastructure. Review of Current Knowledge. Foundation for Water Research FR/R0014

INTRODUCTION TO CIVIL ENGINEERING			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Total Number of Lecture Hours	_	Exam Hours	0

Credits - 03

Course Objectives:

- 1. To give an understanding to the students of the vast breadth and numerous areas of engagement available in the overall field of Civil Engineering
- 2. To motivate the student to pursue a career in one of the many areas of Civil Engineering with deep interest and keenness.
- 3. To expose the students to the various avenues available for doing creative and
- 4. Innovative work in this field by showcasing the many monuments and inspiring projects of public utility.

Unit -1 History of Civil engineering	Hours
Early constructions and developments over time; Ancient monuments & Modern	
marvels; Development of various materials of construction and methods of	10
construction; Works of Eminent civil engineers	
Unit -2 Fundamentals of Building Materials	
Stones, bricks, mortars, Plain, Reinforced & Prestressed Concrete, Admixture;	
Structural Steel, High Tensile Steel, Recycling of Construction & Demolition	
wastes, Damp Proofing and water proofing materials and uses – Plastering Pointing,	10
white washing and distempering. Paints: Constituents of a paint – Types of paints –	
Painting of new/old wood- Varnish. Form Works and Scaffoldings.	
Unit – 3 Basics of Construction Management & Contracts Management	
Temporary Structures in Construction; Construction Methods for various types	
of Structures; Major Construction equipment; Modern Project management	10
Systems; Advent of Lean Construction; Importance of Contracts Management-	10
Terms in Contract-contract Types	
Unit – 4 Surveying & Geomatics	
Surveying & Geomatics: Overview of Surveying, Traditional surveying	
techniques-, Total Stations; GPS & GIS Applications	09
Unit-5 Geotechnical Engineering	
Basics of soil mechanics, rock mechanics and geology; various types of	09
foundations; basics of rock mechanics & tunneling	U9

Course outcomes:

On completion of this course, students are able to:

- 1. Understand the role of Civil Engineering in Modern World
- 2. Know the details and working of various building materials
- 3. Understand the concept of various construction management Techniques
- 4. Know basic surveying methods and their applications
- 5. Understand the importance of soil mechanics and rock mechanics in various structural designs

TEXT BOOKS

- 1. Patil, B.S.(1974), Legal Aspects of Building and Engineering Contract
- 2. Soil dynamics and machine foundations by K.R. Arora
- 3. Surveying vol 1&2 byB.C.Punmia, Laxmi publications, 2005
- 4. Building Materials by P.C. Verghese, PHI learning pvt. Ltd., 2015
- 5. Meena Rao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset

- 1. Chandiramani, Neelima (2000), The Law of Contract: An Outline, 2nd Edn. Avinash Publications Mumbai
- 2. Avtarsingh (2002), Law of Contract, Eastern Book Co.
- 3. Dutt (1994), Indian Contract Act, Eastern Law House
- 4. The National Building Code, BIS, (2017)

DISASTER MANAGEMENT			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits – 03			

Course Objectives:

- 1. Develop an understanding of why and how the modern disaster manager is involved with pre-disaster and post-disaster activities.
- **2.** Develop an awareness of the chronological phases of natural disaster response and refugee relief operations. Understand how the phases of each are parallel and how they differ.
- 3. Understand the 'relief system' and the 'disaster victim.
- **4.** Describe the three planning strategies use full in mitigation.
- **5.** Identify the regulatory controls used in hazard management.
- **6.** Describe public awareness and economic incentive possibilities.

Unit -1 Natural Hazards And Disaster Management	Hours
Introduction of DM-Inter Disciplinary –nature of the subject–Disaster Management cycle–Five priorities for action. Case study methods of the following:floods, draughts – Earthquakes – global warming, cyclones&Tsunamis – Post Tsunami hazards along the Indian coast– landslides.	10
Unit -2 Man Made Disaster And Their Management Along With Case Study N Of The Following	Iethods
Fire hazards— transport hazard dynamics— solid waste management—post disaster—bio terrotirism— threat in mega cities, rail and aircraft's accidents, and Emerging in factious diseases & Aids and their management.	09
Unit – 3 RiskAndVulnerability	
Building codes and land use planning –social vulnerability–environmental vulnerability–Macroeconomic management and sustainable development, climate change risk rendition–financial management of disaster– related losses	09
Unit – 4 Role Of Technology In Disaster Managements:	l
Disaster management for infrastructures, taxonomy of infrastructure–treatment plants and process facilities-electrical substations- roads and bridges- mitigation programme for earthquakes–flow chart, geospatial information in agriculture drought assessment-multimedia technology in disaster risk management and training- transformable indigenous knowledge in disaster reduction.	10
Unit-5 Education And Community Preparedness:	
Education in disaster risk reduction-Essentials of school disaster education-Community capacity and disaster resilience-Community based disaster recovery-Community based disaster management and social capital- Designing resilience-building community capacity for action.	10

Course outcomes:

On completion of this course, students are able to

- 1. Affirm the usefulness of integrating management principles in disaster mitigation work.
- 2. Distinguish between the different approaches needed to manage pre-during and post-disaster periods.
- 3. Explain the process of risk management.
- 4. Relate to risk transfer.
- 5. Prepare community for risk reduction.

TEXT BOOKS

- **1.** Disaster Management–Global Challenges and Local Solutions 'by Rajib shah & RKrishnamurthy (2009), Universities press.
- **2.** Disaster Science & Management 'by Tushar Bhattacharya, Tata Mc Graw Hill Education Pvt. Ltd., NewDelhi.
- **3.** Disaster Management–Future Challenges and Opportunities 'by Jagbir Singh(2007),I K International Publishing House Pvt. Ltd.
- **4.** http://ndma.gov.in/ (Home page of National Disaster Management Authority).

ENVIONMENTAL POLLUTION AND CONTROL			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Credits – 03

Course Objectives:

- 1. Impart knowledge on fundamental aspects of air pollution &control, noise pollution, and solid waste management.
- 2. Provide basic knowledge on sustainable development.
- 3. Introduces some basics of sanitation methods essential for protection of community health.
- 4. Differentiate the solid and hazardous waste based on characterization.

Unit -1 Introduction	Hours
Air Pollution: Air pollution Control Methods–Particulate control devices–	
Methods of Controlling Gaseous Emissions–Air quality standards.	10
Noise Pollution: Noise standards, Measurement and control methods-	10
Reducing residential and industrial noise– ISO14000.	
Unit -2 Industrial wastewater Management	
Strategies for pollution control- Volume and Strength reduction-	
Neutralization –Equalization– Proportioning –Common Effluent Treatment	09
Plants-Recirculation of industrial wastes–Effluent standards.	
Unit - 3SolidWasteManagement	
Solid waste characteristics -basics of on-site handling and collection -	
separation and processing-Incineration- Composting-Solid waste disposal	09
methods- fundamentals of Land filling.	
Unit – 4 Environmental Sanitation	
Environmental Sanitation Methods for Hostels and Hotels, Hospitals,	
Swimming pools and public bathing places, social gatherings (mela sand	10
fares), Schools and Institutions, Rural Sanitation-low cost waste disposal	10
methods.	
Unit-5 Hazardous Waste	
Characterization - Nuclear waste- Biomedical wastes- Electronic wastes-	
Chemical wastes-Treatment and management of hazardous waste-Disposal	10
and Control methods.	

Course outcomes:

On completion of this course, students are able to

- 1. Identify the air pollutant control devices
- 2. Have knowledge on the NAAQ standard sand air emission standards.
- 3. Differentiate the treatment techniques used for sewage and industrial waste water treatment methods.
- 4. Understand the fundamentals of solid waste management; practices adopted in his town/village and its importance in keeping the health of the city.
- 5. Appreciate the methods of environmental sanitation and the management of community facilities without spread of epidemics.

TEXT BOOKS

- **1.** Environmental Engineering, byRuth F. Weiner andRobin Matthews–4thEditionElesevier,2003.
- **2.** Environmental Science and Engineering by J.G. Henryand G.W. Heinke-Pearson Education.
- **3.** Environmental Engineering by Mackenzie L Davis & David A Cornwell.McGrawHillPublishing1. Air Pollution and Control by M.N.Rao&H.N.Rao

- 1. Air Pollution and Control by M.N.Rao&H.N.Rao
- 2. Solid Waste Management by K.SasiKumar, S.A.GopiKrishna. PHI New Delhi.
- **3.** Environmental Engineering by Gerard Kiley, TataMcGrawHill.
- **4.** Environmental Sanitationby KVSG Murali Krishna, Reem Publications, New Delhi.

BUILDING MATERIALS			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits – 03			

Course Objectives:

- 1. Initiating the student with the knowledge of basic building materials and their properties
- **2.** Imparting the knowledge of course pattern in masonry construction and flat roofs and techniques of forming foundation, columns, beams, walls, sloped and flat roofs.
- **3.** The student is to be exposed to the various patterns of floors, walls, different types of paints and varnishes.
- 4. Imparting the students with the techniques of formwork and scaffolding
- **5.** The students should be exposed to classification of aggregates, moisture content of the aggregate.

Unit -1 Introduction	Hours
Stones, Bricks And Tiles Properties of building stones – relation to their structural requirements, classification of stones – stone quarrying – precautions in blasting,	
dressing of stone, composition of good brick earth, various methods of	10
manufacturing of bricks. Characteristics of good tile - manufacturing methods,	10
types of tiles. Uses of materials like Aluminium, Gypsum, Glass and Bituminous	
materials	
Unit -2Masonry	
Types of masonry, English and Flemish bonds, Rubble and Ashlars Masonry.	
Cavity and partition walls. Wood: Structure – Properties- Seasoning of timber-	
Classification of various types of woods used in buildings- Defects in timber.	10
Alternative materials for wood – Galvanized Iron, Fiber Reinforced Plastics, Steel,	
Aluminium	
Unit – 3Lime And Cement Lime	
Various ingredients of lime – Constituents of lime stone – classification of lime –	
various methods of manufacture of lime. Cement: Portland cement- Chemical	
Composition – Hydration, setting and fineness of cement. Various types of cement	10
and their properties. Various field and laboratory tests for Cement. Various	
ingredients of cement concrete and their importance – various tests for concrete.	
Unit – 4 Building Components	
Lintels, arches, vaults, stair cases – types. Different types of floors – Concrete,	
Mosaic, and Terrazzo floors, Pitched, flat roofs. Lean to roof, Coupled Roofs.	09
Trussed roofs – King and Queen post Trusses. R.C.C Roofs, Madras Terrace and	0)
Pre-fabricated roofs	
Unit-5 Finishing's	T
Damp Proofing and water proofing materials and uses – Plastering Pointing, white	
washing and distempering. Paints: Constituents of a paint – Types of paints –	09
Painting of new/old wood- Varnish. Form Works and Scaffoldings.	

Course outcomes:

On completion of this course, students are able to

- 1. Identify different building materials and their importance in building construction.
- 2. Differentiate brick masonry, stone masonry construction and use of lime and cement in various constructions.
- 3. Importance of building components and finishings.
- 4. Classification of aggregates, sieve analysis and moisture content usually required in building construction.
- 5. Understand the role of different floors, paints, Damp Proofing, structural elements

TEXT BOOKS

- 1. Building Materials, S. S. Bhavikatti, Vices publications House private ltd.
- 2. Building Construction, S. S. Bhavikatti, Vices publications House private ltd.
- 3. Building Materials, B. C. Punmia, Laxmi Publications private ltd.
- 4. Building Construction, B.C. Punmia, Laxmi Publications (p) ltd

- 1. Building Materials, S. K. Duggal, New Age International Publications.
- 2. Building Materials, P. C. Verghese, PHI learning (P) ltd.
- 3. Building Materials, M. L. Gambhir, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 4. Building construction, P. C. Verghese, PHI Learning (P) Ltd.

GREEN BUILDINGS AND SUSTAINABILITY					
Subject Code	18XXCEOXXXX	Internal Marks	30		
Number of Lecture Hours/Week	03	External Marks	70		
Total Number of Lecture Hours	48	Exam Hours	03		

Credits -03

Course Objectives:

Enable the students to

- 1. Know the green building and green energy building materials.
- 2. Familiarize with different rating agencies and features of green buildings.
- 3. Understand the term sustainability and sustainable development.
- 4. Learn sources of greenhouse gases and its impact on climate.
- 5. Understand and Plan land use confirming to zonal regulations

Unit -1	Hours
INTRODUCTION What is Green Building, Why to go for Green Building,	
Benefits of Green Buildings, Green Building Materials and Equipment in India,	10
What are key Requisites for Constructing a Green Building, Important Sustainable	10
features for Green Building	
Unit -2	
GREEN BUILDING CONCEPTS AND PRACTICES Indian Green Building	
Council, Green Building Moment in India, Benefits Experienced in Green	
Buildings, Launch of Green Building Rating Systems, Residential Sector,	
Market Transformation; Green Building Opportunities And Benefits:	10
Opportunities of Green Building, Green Building Features, Material and	10
Resources, Water Efficiency, Optimum Energy Efficiency, Typical Energy	
Saving Approach in Buildings, LEED India Rating System and Energy	
Efficiency,	
Unit – 3	
SUSTAINABILITY Introduction, Human development index, Sustainable	
development and social ethics, definitions of sustainability, populations and	09
consumptions	
Unit – 4	
THE CARBON CYCLE AND ENERGY BALANCES Introduction,	
Climate science history, carbon sources and emissions, The carbon cycle,	
carbon flow pathways, and repositories, Global energy balance, Global	09
energy balance and temperature model, Greenhouse gases and Effects,	
Climate change projections and impacts	
Unit-5	
SUSTAINABILITY AND BUILT ENVIRONMENT Introduction, Land	
use and land cover change, Land use planning and its role in sustainable	
development-Zoning and land use planning, smart growth, Environmentally	10
sensitive design- low impact development, green infrastructure and	10
conservation design, Green buildings and land use planning, Energy use and	
buildings	

Course outcomes:

On completion of this course, students are able to:

- 1. Describe green buildings and green building materials.
- 2. Acquaint with different rating agencies and energy features of green buildings.
- 3. Understand the term sustainability and sustainable development.
- 4. Recognize sources of green house gases emissions and its impact on climate.
- 5. Plan land use confirming to zonal regulations.

TEXT BOOKS

- 1. Standard for the Design of High-Performance Green Buildings by ASHRAE
- 2. Engineering Applications in Sustainable Design and Development By Bradley A.Striebig, Adebayo A.Ogundipe and Maria Papadakis. First edition, 2016, CENGAGE Learning.

- 1. Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air Conditioning Engineers, 2009. 2.
- 2. Green Building Hand Book by Tomwoolley and Samkimings, 2009.
- 3. IGBC Smart Cities & Green Building Concept in India

Open Elective Courses Offered by CSE,CST & IT to other Departments

Open Elective Courses offered by CSE

S.No.	Subject Code	Name of the subject	L	T	P	Cr
1.	18XXCSOXXXX	Internet of Things	3	0	0	3
2.	18XXCSOXXXX	Block Chain	3	0	0	3
3.	18XXCSOXXXX	Quantum Computing	3	0	0	3
4.	18XXCSOXXXX	Virtual Reality	3	0	0	3
5.	18XXCSOXXXX	Data Structures through C	3	0	0	3
6.	18XXCSOXXXX	Designing Database Management Systems	3	0	0	3
7.	18XXCSOXXXX	Operating Systems Concepts	3	0	0	3
8.	18XXCSOXXXX	R Programming	3	0	0	3
9.	18XXCSOXXXX	Python Programming	3	0	0	3
10.	18XXCSOXXXX	Java Programming	3	0	0	3
11.	18XXCSOXXXX	App Technologies	3	0	0	3
12.	18XXCSOXXXX	Web Technologies	3	0	0	3
13.	18XXCSOXXXX	Artificial Intelligence	3	0	0	3

Open Electives Courses Offered by CST to other Departments

S.No	Subject Code	Name of the subject	L	T	P	Cr
1	18XXCTOXXXX	Internet of Things	3	0	0	3
2	18XXCTOXXXX	Block Chain	3	0	0	3
3	18XXCTOXXXX	Quantum Computing	3	0	0	3
4	18XXCTOXXXX	Virtual Reality	3	0	0	3
5	18XXCTOXXXX	Data Structures Through C	3	0	0	3
6	18XXCTOXXXX	Designing Database Management Systems	3	0	0	3
7	18XXCTOXXXX	Operating Systems Concepts	3	0	0	3
8	18XXCTOXXXX	R Programming	3	0	0	3
9	18XXCTOXXXX	Python Programming	3	0	0	3
10	18XXCTOXXXX	Java Programming	3	0	0	3
11	18XXCTOXXXX	App Technologies	3	0	0	3
12	18XXCTOXXXX	Web Technologies	3	0	0	3
13	18XXCTOXXXX	Artificial Intelligence	3	0	0	3

INTERNET OF THINGS					
Subject Code 18XXCSOXXXX IA Marks 30					
Number of Lecture Hours/Week	03	Exam Marks	70		
Total Number of Lecture Hours	48	Exam Hours	03		
Credits – 03					

- **1.** Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem.
- **2.** Formalize a given problem in the language/framework of different AI methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, as a Markov decision process, etc).
- **3.** Implement basic AI algorithms (e.g., standard search algorithms or dynamic programming).
- **4.** Design and carry out an empirical evaluation of different algorithms on problem formalization, and state the conclusions that the evaluation supports.

Unit -1: The Internet of Things	Hours
An Overview of Internet of things, Internet of Things Technology, behind IoTs Sources of the IoTs, M2M Communication, Examples OF IoTs, Design Principles for Connected Devices	09
Unit -2 :Business Models	
Business Processes in the Internet of Things ,IoT/M2M systems LAYERS AND	
designs standardizations ,Modified OSI Stack for the IoT/M2M Systems ,ETSI M2M domains and High-level capabilities ,Communication Technologies, Data Enrichment and Consolidation and Device Management Gateway Ease of designing and affordability	10
Unit – 3:Design Principles for the Web Connectivity	
Design Principles for the Web Connectivity for connected-Devices, Web Communication protocols for Connected Devices, Message Communication protocols for Connected Devices, Web Connectivity for connected-Devices.	10
Unit – 4:Internet Connectivity Principles	
Internet Connectivity Principles, Internet connectivity, Application Layer Protocols: HTTP, HTTPS, FTP, Telnet. Data Acquiring, Organizing and Analytics in IoT/M2M, Applications/Services/Business Processes, IOT/M2M Data Acquiring and Storage, Business Models for Business Processes in the Internet of Things, Organizing Data, Transactions, Business Processes, Integration and Enterprise Systems.	10
Unit – 5:Data Collection	
Data Collection, Storage and Computing Using a Cloud Platform for IoT/M2M Applications/Services, Data Collection, Storage and Computing Using cloud platform Everything as a service and Cloud Service Models, IOT cloud-based services using the Xively (Pachube/COSM), Nimbits and other platforms Sensor, Participatory Sensing, Actuator, Radio Frequency Identification, and Wireless, Sensor Network Technology, Sensors Technology, Sensing the World.	09

Text	(T) / Reference(R) Books:
T1	Internet of Things: Architecture, Design Principles And Applications, Rajkamal,
	McGraw Hill Higher Education
T2	Internet of Things, A.Bahgya and V.Madisetti, University Press, 2015
R1	Designing the Internet of Things, Adrian McEwen and Hakim Cassimally, Wiley
R2	Getting Started with the Internet of Things CunoPfister, Oreilly
W1	https://www.coursera.org/specializations/internet-of-things
W2	https://alison.com/course/internet-of-things-and-the-cloud

Cours	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate knowledge and understanding of the security and ethical issues of the		
	Internet of Things		
CO2	Conceptually identify vulnerabilities in Internet of Things		
CO3	Conceptually identify recent attacks, involving the Internet of Things		
CO4	Develop critical thinking skills		
CO5	Compare and contrast the threat environment based on industry and/or device type.		

BLOCI	K CHAIN TECHNOLOGY		
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03		
Course Objectives:			
The learning objectives of this course are:			
1. To assess blockchain applications in a structured manner.			
2. To impart knowledge in block chain techniques and able to present the concepts			
clearly and structured.			
3. To get familiarity with future currencies and to create own crypto token.			
Unit 1. Introduction			

Unit -1: Introduction	Hours
Overview of Block chain, public ledgers, bitcoin, smart contracts, block in a block chain, transactions, distributed consensus, public vs private block chain, understanding crypto currency to block chain, permissioned model of block chain, overview of security aspects of block chain, cryptographic hash function, properties of a hash function, hash pointer and Merkle tree, digital signature, public key cryptography, a basic crypto currency.	10
Unit -2 :Understanding block chain with crypto currency	
Creation of coins, payments and double spending, bitcoin scripts, bitcoin P2P network, transaction in bitcoin network, block mining, block propagation and block relay, distributed consensus in open environments, consensus in a bitcoin network, Proof of Work (PoW)- Basic Introduction, hashcash PoW, Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of burn and proof of elapsed time, the life of a bitcoin miner, Mining- Difficulty, mining pool.	10
Unit – 3:Permissioned Block Chain	
Permissioned model and usecases, design issues for permissioned block chains, execute contracts, state machine replication, overview of consensus models for permissioned block chain, Distributed consensus in closed environment, paxos, RAFT consensus, Byzantine general problem, Byzantine fault tolerance system, Lamport-Shostak-Pease BFT algorithm, BFT over Asynchronous systems.	10
Unit – 4:Enterprise application of Block chain	
Cross border payments, Know Your Customer, Food security, Mortgage over block chain, Block chain enabled trade, trade finance network, supply chain financing, identity on block chain.	09
Unit – 5:Block chain application development	
Hyperledger fabric- architecture, identities and policies, membership and access control, channels, transaction validation, writing smart contract using Hyperledger fabric, writing smart contract using Ethereum, overview of Ripple and Corda.	09

Text	Text(T) / Reference(R) Books:		
T1	Block Chain: Blueprint for a new economy, Melanie Swan, O'Reilly, 2015.		
T2	Block Chain: The Block Chain for Beginners- Guide to Block Chain Technology and		
	Leveraging Block Chain Programming, Josh Thompsons		
R1	Block Chain Basics, Daniel Drescher, Apress; 1 st edition, 2017		
R2	Block Chain and Crypto Currencies, Anshul Kaushik, Khanna Publishing House,		
	Delhi.		
R3	Mastering Block Chain: Distributed Ledger Technology, Decentralization and Smart		
	Contracts Explained, Imran Bhashir, Packt Publishing.		
W1	https://www.edx.org/learn/blockchain		
W2	https://www.coursera.org/courses?query=blockchain		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand block chain technology.		
CO2	Develop block chain-based solutions		
CO3	Write smart contract using Hyperledger Fabric and Ethereum frameworks.		
CO4	Build and deploy block chain application for on premise and cloud-based architecture.		
CO5	Integrate ideas from various domains and implement them.		

Subject Code	ANTUM COMPUTING 18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	
Total Number of Lecture Hours	48	Exam Hours	
Total Number of Dectare Hours	Credits – 03	Laum Hours	03
Course Objectives:			
The learning objectives of this cours	se are:		
	damentals of quantum information	processing, in	cludin
quantum computation, quantum cryp	-		•
Unit -1:Introduction to Quantum	computing		Hours
Motivation for studying Quantum co	omputing,, Mojor players in industr	y, Origin of	00
Quantum Computing, overview of m			09
Unit -2 :Math Foundation for Qua	antum Computing		
Matrix algebra- Basic vectors and o	orthogonality, inner product and Hil	bert spaces,	
matrices and tensors, unitary operators and projectors, dirac notation, Eigen values			09
and Eigen vector			
Unit - 3: Building Blocks for Quan	ntum Program		
Architectures of a Quantum Com		system of	
information representation- Bloc		•	
superposition of qubits, Quantum			
algorithmic perceptive, Operations			10
Programming model for a Quantu			
classical computer, steps performed	l on Quantum computer, Moving d	ata between	
bits and qubits.			
Unit – 4: Quantum Algorithms			
-	Fourier Transform, Phase Kick-bac	k, Quantum	10
Amplitude amplification, Quantum			10
Amplitude amplification, Quantum Phase estimation, Quantum Walks			
Amplitude amplification, Quantum Phase estimation, Quantum Walks Unit – 5: Algorithms			_
Amplitude amplification, Quantum Phase estimation, Quantum Walks		eutsch-Jozsa	10

Text(Text(T) / Reference(R) Books:		
T1	Quantum Computation and Quantum Information, Michael A. Nielsen, Cambridge		
	University Press.		
R1	Quantum Computation Explained, David Mc Mahon, Wiley		
W1	https://quantumcurriculum.mit.edu/		
W2	https://www.coursera.org/courses?query=quantum%20computing		

Cours	Course Outcomes: On completion of this course, students can	
CO1	To explain the working of Quantum computing program.	
CO2	To explain architecture and program model.	
CO3	Develop Quantum logic gate circuits	
CO4	Develop quantum algorithm	
CO5	Program Quantum algorithm on major toolkits.	

VIRTUAL REALITY			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits – 03			

- 1. Understand how the design of VR technology relates to human perception and cognition.
- 2. Discuss applications of VR to the conduct of scientific research, training, and industrial design.
- 3. Gain first-hand experience with using virtual environment technology, including 3D rendering software, tracking hardware, and input/output functions for capturing user data.
- 4. Learn the fundamental aspects of designing and implementing rigorous empirical experiments using VR.
- 5. Learn about multimodal virtual displays for conveying and presenting information and techniques for evaluating good and bad virtual interfaces.

Unit -1:Virtual reality and Virtual Environment	Hours
Introduction, Computer graphics, Real time computer graphics, flight simulation, virtual environment requirement, benefits of virtual reality, historical development of VR, scientific landmark. 3D Commuter Graphics: Introduction, virtual world space, positioning the virtual observer, perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, simple 3D modelling, Illumination models, reflection models, shading algorithms, radiosity, hidden surface removal, realism-stereographic image.	10
Unit -2 :Geometric Modelling	
Introduction, from 2D to 3D, 3D space curves, 3D boundary representation. Geometric transformation: Introduction, frames to reference, modelling transformations, instances, picking, flying, scaling the VE, Collision and detection. Generic VR system: Virtual environment, computer environment, VR technology-models of interaction, VR systems.	10
Unit – 3:Animating the Virtual Environment	
Introduction, the dynamics of numbers, linear and non-linear and non-linear interpolation, the animation of objects, linear and non-linear translation, shape & object in between, free from deformation, particle system. Physical Simulation: Objects falling in a gravitational field, rotating wheels, elastic collisions, projectiles, simple pendulum, springs, flight dynamics of an aircraft	09
Unit – 4:Human Factors	
the eye, the ear, the somatic senses. VR Hardware: Sensor hardware, head-coupled displays, acoustic hardware, integrated VR systems. VR Software: Modelling virtual world, physical simulation, VR toolkits, Introduction to VRML.	09
Unit – 5:VR Applications	T
Shor's Algorithm, Grover's Algorithm, Deutsch's Algorithm, Deutsch-Jozsa Algorithm, IBM Quantum Experience, Microsoft Q, Rigetti PyQuil	12

Text	(T) / Reference(R) Books:
T1	Virtual Reality Systems, John Vince, Pearson Education Asia, 2007.
T2	Augmented and Virtual Reality, Anand R, Khanna Publishing House. Delhi
R1	Visualizations of Virtual Reality, Adams, Tata Mc Graw Hill, 2000
R2	Virtual Reality Technology, Grigore C. Burdea, Philippe Coieffet, Wiley Inter Science,
	2 nd edition, 2006.
W1	https://www.coursera.org/courses?query=virtual%20reality
W2	https://www.classcentral.com/tag/virtual-reality

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand geometric modelling		
CO2	Understand Virtual environment		
CO3	Study about Virtual Hardware and Software		
CO4	Study about Software needed for developing virtual reality environment.		
CO5	Develop Virtual Reality applications.		

DATA STRUCTURES THROUGH C			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	s 70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03	<u>'</u>	l .
Course Objectives:			
The learning objectives of this course	e are:		
1. Operations on linear data stru	ictures and their applications.		
2. The various operations on lin	ked lists.		
3. The basic concepts of Trees,	Traversal methods and operation	ons.	
4. Concepts of implementing gr	aphs and its relevant algorithm	ıs.	
5. Sorting and searching algorit	hms.		
Unit -1: INTRODUCTION TO DA			Hours
Data Management concepts, Data type	pes – primitive and non-primiti	ive, Performance	
Analysis and Measurement (Time an			
and worst-case analysis), Types of D	ata Structures- Linear & Non-	Linear Data	
Structures.			10
Sorting and Searching:			
Sorting – Bubble Sort, Selection Sor		ching –	
Sequential Search and Binary Search Unit -2:LINEAR DATA STRUCT			
Array: Representation of arrays, A	Applications of arrays, sparse	e matrix and its	
representation Stack: Stack-Definitions & Conce	ents Operations On Stacks	Applications of	
Stacks, Polish Expression, Reverse			10
Recursion.		, , , , , , , , , , , , , , , , , , ,	
Queue: Representation Of Queue, O	Operations On Queue, Circula	r Queue, Double	
Ended Queue, Applications of Queue	e.		
Unit – 3: LINKED LIST			
Linked List: Singly Linked List, Dou	ıbly Linked list, Circular linked	d list ,Linked	
implementation of Stack, Linked imp	-		09
list.			
Unit – 4:NONLINEAR DATA STI	RUCTURE		
Tree-Definitions and Concepts, Repr	•	ry tree traversal	
(Inorder, postorder, preorder), Binary			09
General Trees To Binary Trees, App	lications of Trees.		
Unit – 5:GRAPH, HASHING ANI	FILE STRUCTURES		
Graph-Matrix Representation Of G	raphs, Elementary Graph ope	rations, (Breadth	
First Search, Depth First Search, Sp	anning Trees, Shortest path, N	Ainimal spanning	
tree)			
Hashing: The symbol table, Hashin	-	-	10
File Structure: Concepts of fields	<u>-</u>	al, Indexed and	
Relative/Random File Organization, files, hashing for direct files, Multi-F	_	smethods	
ines, nashing for unrect files, willli-r	Scy The Organization and acces	sinculous.	

Text	c(T) / Reference(R) Books:
T1	Data Structures using C -By Reema Thareja - OXFORD Higher Publication
T2	Data Structures using C & C++ -By Ten Baum Publisher – Prenctice-Hall
	International
R1	Fundamentals of Computer Algorithms by Horowitz, Sahni, Galgotia Pub. 2001 ed
R2	Fundamentals of Data Structures in C++-By Sartaj Sahani.
R3	Data Structures: A Pseudo-code approach with C -By Gilberg & Forouzan
	Publisher Thomson Learning
W1	https://www.coursera.org/specializations/data-structures-algorithms
W2	https://online-learning.harvard.edu/course/data-structures-and-algorithms

Cour	Course Outcomes: On completion of this course, students can		
CO1	Choose appropriate data structure as applied to specified problem definition.		
CO2	Handle operations like searching, insertion, deletion, traversing mechanism etc. on various data structures		
CO3	Apply concepts learned in various domains like DBMS		
CO4	Apply concepts learned in various domains like compiler construction		
CO5	Use linear and non-linear data structures like stacks, queues, linked list		

DESIGNING DATABASE MANAGEMENT SYSTEMS			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03	<u> </u>	
Course Objectives:			
The learning objectives of this course	e are:		
1.To introduce about database manag			
2.To give a good formal foundation	on on the relational mo	odel of data and u	sage of
Relational Algebra			
3.To introduce the concepts of basic S	SQL as a universal Datab	oase language	
4.To demonstrate the principles be	ehind systematic databa	ase design approac	ches by
covering conceptual design, logical d			
5. To provide an overview of databas	e transactions and concu	rrency control.	
Unit -1: Database system architectu	ıre		Hours
Introduction to Databases: Chara		1.1	
Advantages of using the DBMS A			
Applications. Overview of Databa	ase Languages and Ar	rchitectures: Data	10
Models, Schemas and Instances,	Three-Schema Archit	ecture and Data	
Independence, Database Users, Arch	nitecture for DBMS.		
Unit -2 : E-R Models			
The		E-R	
Models, The Relational Model, Introduced and the production of t	ctiontoDatabaseDesign,D	OatabaseDesign	
and Er Diagrams, Entities Attribu	ites, and Entity Sets,	Relationship and	10
Relationship Sets, Conceptual Design with the Er Models, The Relational		10	
Model Integrity Constraints Over I	Relations, Key Constrai	ints, Foreign Key	
Constraints, General Constraints.			
Unit - 3: Relational Algebra			
Relational Algebra, Selection and Pr			
Division, More Examples of Querie		Tuple Relational	
Calculus, Domain Relational Calculu			10
The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries,		10	
Aggregate Operators, Null Values,	Complex Integrity Co.	nstraints in SQL,	
Triggers and Active Database.			
Unit - 4: Normalization			
Purpose of Normalization or sch			
dependency, normal forms based on			09
NF), concept of surrogate key, Boyce			0)
and dependency preserving decompos		m(4NF).	
Unit - 5: Transaction Management			
Transaction, properties of transac	_		
management with SQL using comm			
control for lost updates, Uncommit			
			09
types, two phase locking for ensuring			
control with time stamp ordering	: Wait/Die and Woun	nd/Wait Schemes,	
Database Recovery management			

Database Recovery management.

Text(Text(T) / Reference(R) Books:		
T1	In Introduction to Database Systems, CJDate, Pearson.		
T2	Database Management Systems,3rdEdition,Raghurama Krishnan, Johannes Gehrke,		
	TATAMcGrawHill.		
T3	Database Systems-TheCompleteBook,H GMolina,J DUllman,J WidomPearson.		
T4	Database Management Systems,6/e Ramez Elmasri, Shamkant B. Navathe, PEA		
R1	DatabaseSystemsdesign,Implementation,andManagement,7thEdition,PeterRob&Carl		
	osCoronel		
R2	Database System Concepts, 5th edition, Silberschatz, Korth, TMH		
R3	The Database Book Principles & Practice Using Oracle/MySQL, Narain Gehani,		
	University Press.		
W1	https://onlinecourses.nptel.ac.in/noc18_cs15/preview		
W2	https://www.coursera.org/courses?query=database		

Course Outcomes: On completion of this course, students can		
CO1	Understand the basic elements of a relational database management system.	
CO2	Draw entity relationship and convert entity relationship diagrams into RDBMS.	
CO3	Create, maintain, and manipulate a relational database using SQL.	
CO4	Designs and applies normalization techniques for logical schema model.	
CO5	Solves concurrent issues and problems through locking mechanism.	

OPERATING SYSTEMS CONCEPTS			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Q 11. 02			

Course Objectives:

- 1. Introduce the basic concepts of operating systems, its functions and services.
- 2. To provide the basic concepts of process management and synchronization.
- 3. Familiarize with deadlock issues.
- 4. Understand the various memory management skills.
- 5. Give exposure over I/O systems and mass storage structures.

Unit -1: Operating Systems Overview	Hours
Computer system organization, Operating system structure, Process, memory,	1
storage management, Protection and security, Distributed systems, Computing	09
Environments, Open-source operating systems, OS services, User operating-system	
interface.	I
Unit -2 :System Calls & IPC	
System calls, Types, System programs, OS structure, OS generation, System Boot	İ
Process concept, scheduling (Operations on processes, Cooperating processes,	09
Inter-process communication), Multi-threading models	ı
Unit - 3: Process Management	
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling,	İ
Multiple processor scheduling Operating system, Algorithm	ı
Evaluation, The critical section problem, Peterson's solution, Synchronization	10
hardware, Semaphores, Classic problems of synchronization, Critical regions,	ı
Monitors.	1
Unit - 4:Memory Management & Dead lock	
System model, Deadlock characterization, Methods for handling deadlocks,	ı
Deadlock Prevention, Deadlock Avoidance, Deadlock detection, Recovery from	ı
deadlock.	ı
Storage Management: Swapping, Contiguous memory allocation, Paging,	10
Segmentation Virtual Memory Background, Demand paging, copy on write, Page	ı
replacement and various Page replacement algorithms, Allocation of frames,	ı
Thrashing.	
Unit - 5:I/O Systems	
File concept, Access methods, Directory structure, Filesystem mounting,	İ
Protection, Directory implementation, Allocation methods, Free-space	10
management, Disk scheduling, Disk management, Swap-space management,	
Protection.	

Text	(T) / Reference(R) Books:
T1	Operating System Concepts Essentials, Abraham Silberschatz, Peter B. Galvin, Greg
	Gagne, John Wiley & Sons Inc., 2010.
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter Baer Galvin and
	Greg Gagne, John Wiley and Sons Inc., 2012
T3	Operating Systems, Second Edition, S Halder, Alex A Aravind, Pearson Education,
	2016
T4	Operating Systems – Internals and Design Principles, 7th Edition, William Stallings,
	Prentice Hall, 2011
R1	Modern Operating Systems, Second Edition, Andrew S. Tanenbaum, Addison Wesley,
	2001.
R2	Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata McGraw Hill
	Education, 1996.
R3	Operating Systems: A Concept-based Approach, Second Edition, D M Dhamdhere,
	Tata McGraw-Hill Education, 2007
R4	Operating Systems: Internals and Design Principles, Seventh Edition, William
	Stallings, Prentice Hall, 2011
W1	https://www.coursera.org/courses?query=operating%20system
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview

Course	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate knowledge on Computer System organization and Operating system		
	services.		
CO2	Design solutions for process synchronization problems by using System calls and		
	Inter process communication.		
CO3	Identify the functionality involved in process management concepts like scheduling		
	and synchronization.		
CO4	Design models for handling deadlock and perform memory management.		
CO5	Analyze services of I/O subsystems and mechanisms of security & protection.		

R PROGRAMMING			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Course Objectives:

- 1. Use R for statistical programming, computation, graphics, and modeling.
- 2. Write functions and use R in an efficient way.
- 3. Fit some basic types of statistical models.
- 4. Use R in their own research.
- **5.** Be able to expand their knowledge of R on their own.

Unit -1: Introduction	Hours
How to run R, R Sessions and Functions, Basic Math, Variables, Data Types,	
Vectors, Conclusion, Advanced Data Structures, Data Frames, Lists, Matrices,	09
Arrays, Classes.	
Unit -2:	
R Programming Structures, Control Statements, Loops,-Looping Over Nonvector	
Sets,- If-Else, Arithmetic and Boolean Operators and values, Default Values for	
Argument, Return Values, Deciding Whether to explicitly call return- Returning	10
Complex Objects, Functions are Objective, No Pointers in R, Recursion, A	
Quicksort Implementation-Extended Extended Example: A Binary Search Tree.	
Unit – 3:Math and Simulation in R	
Doing Math and Simulation in R, Math Function, Extended Example Calculating	
Probability- Cumulative Sums and Products-Minima and Maxima- Calculus,	
Functions Fir Statistical Distribution, Sorting, Linear Algebra Operation on Vectors	10
and Matrices, Extended Example: Vector cross Product- Extended Example:	10
Finding Stationary Distribution of Markov Chains, Set Operation, Input /out put,	
Accessing the Keyboard and Monitor, Reading and writer Files	
Unit – 4:Graphics	
Creating Graphs, The Workhorse of R Base Graphics, the plot() Function –	
Customizing Graphs, Saving Graphs to Files, Probability Distributions, Normal	10
Distribution- Binomial Distribution- Poisson Distributions Other Distribution,	10
Basic Statistics, Correlation and Covariance, T-Tests,-ANOVA.	
Unit – 5:Linear Models	
Simple Linear Regression, -Multiple Regression Generalized Linear Models,	
Logistic Regression, - Poisson Regression- other Generalized Linear Models-	09
Survival Analysis, Nonlinear Models, Splines- Decision- Random Forests	

Text	Text(T) / Reference(R) Books:	
T1	The Art of R Programming, Norman Matloff, Cengage Learning	
T2	R for Everyone, Lander, Pearson	
R1	R Cookbook, PaulTeetor, Oreilly	
R2	R in Action, Rob Kabacoff, Manning	
W1	https://www.edx.org/learn/r-programming	
W2	https://www.coursera.org/learn/r-programming	

Cours	Course Outcomes: On completion of this course, students can		
CO1	List motivation for learning a programming language		
CO2	Access online resources for R and import new function packages into the R workspace		
CO3	Import, review, manipulate and summarize data-sets in R		
CO4	Explore data-sets to create testable hypotheses and identify appropriate statistical tests		
CO5	Perform appropriate statistical tests using R Create and edit visualizations		

PYT	HON PROGRAMMING		
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	s 70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03		•
Course Objectives:			
The learning objectives of this cours	se are:		
Introduction to Scripting Lar	nguage.		
	as solving approaches of computer	science.	
Unit -1: Introduction	so vorving approximation or company		Hours
History of Python, Need of Python	Programming, Applications Bas	ics of Python	110 411
Programming Using the REPL(•	09
Assignment, Keywords, Input-Output		,	
Unit -2: Types, Operators and Ex			
Types - Integers, Strings, Booleans;	•		
Operators, Comparison (Relationa		tors, Logical	
Operators, Bitwise Operators, I	· • • • • • • • • • • • • • • • • • • •	_	10
Expressions and order of evaluation	s Control Flow- if, if-elif-else, for,	while, break,	10
continue, pass. Data Structures List	s - Operations, Slicing, Methods;	Tuples, Sets,	
Dictionaries, Sequences. Comprehen	nsions.		
Unit – 3: Functions			
Defining Functions, Calling Function			
Default Arguments, Variable-lengt	th arguments, Anonymous Funct	ions, Fruitful	
Functions(Function Returning Value	•		10
Global and Local Variables. Modu		· ·	10
Import statement, name spacing, P	· · ·	PIP, Installing	
Packages via PIP, Using Python Pac			
Unit – 4: Object Oriented Program	<u> </u>		
Classes, 'self variable', Methods,			
Methods, Data hiding, Error and			10
Exception, Handling Exception, try	except block, Raising Exceptions,	User Defined	10
Exceptions			
Unit – 5: Brief Tour of the Standa			
Operating System Interface - Str	Ç,		
Access, Dates and Times, Data Co	_	0	09
Turtle Graphics Testing: Why testing		testing, Unit	
testing in Python, Writing Test cases	s, Kunning Tests.		

Text	Text(T) / Reference(R) Books:	
T1	Python Programming: A Modern Approach, Vamsi Kurama, Pearson	
T2	Learning Python, Mark Lutz, Orielly	
R1	Think Python, Allen Downey, Green Tea Press	
R2	Core Python Programming, W.Chun, Pearson	
R3	Introduction to Python, Kenneth A. Lambert, Cengage	
W1	https://www.coursera.org/courses?query=python	
W2	https://www.edx.org/learn/python	

Cour	Course Outcomes: On completion of this course, students can	
CO1	Making Software easily right out of the box	
CO2	Experience with an interpreted Language	
CO3	To build software for real needs.	
CO4	Prior Introduction to testing software	
CO5	Experience with implementation in current technologies	

JAVA PROGRAMMING			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits – 03			

- 1. Understanding the OOP's concepts, classes and objects, threads, files, applets, swings and act.
- 2. This course introduces computer programming using the JAVA programming language with object-oriented programming principles.
- **3.** Emphasis is placed on event-driven programming methods, including creating and manipulating objects, classes, and using Java for network level programming and middleware development.

Unit -1: Introduction to OOP	Hours
procedural programming language and object-oriented language, principles of OOP, applications of OOP, history of java, java features, JVM, program structure. Variables, primitive data types, identifiers, literals, operators, expressions, precedence rules and associativity, primitive type conversion and casting, flow of control.	10
Unit -2 :Classes and objects	
Classes and objects, class declaration, creating objects, methods, constructors and constructor overloading, garbage collector, importance of static keyword and examples, this keyword, arrays, command line arguments, nested classes.	09
Unit – 3:Inheritance	
Inheritance, types of inheritance, super keyword, final keyword, overriding and abstract class. Interfaces, creating the packages, using packages, importance of CLASSPATH and java.lang package. Exception handling, importance of try, catch, throw, throws and finally block, userdefined exceptions, Assertions	10
Unit – 4:Multithreading	
Introduction, thread life cycle, creation of threads, thread priorities, thread synchronization, communication between threads. Reading data from files and writing data to files, random access file.	09
Unit – 5:Applet	
Applet class, Applet structure, Applet life cycle, sample Applet programs. Event handling: event delegation model, sources of event, Event Listeners, adapter classes, inner classes. AWT: introduction, components and containers, Button, Label, Checkbox, Radio Buttons, List Boxes, Choice Boxes, Container class, Layouts, Menu and Scrollbar.	10

Text	Text(T) / Reference(R) Books:		
T1	The complete Reference Java, 8th edition, Herbert Schildt, TMH		
T2	Programming in JAVA, Sachin Malhotra, SaurabhChoudary, Oxford		
R1	Introduction to java programming, 7th edition by Y Daniel Liang, Pearson		
W1	https://www.coursera.org/courses?query=java		
W2	https://www.udemy.com/java-tutorial/		

Cour	Course Outcomes: On completion of this course, students can		
CO1	Understand Java programming concepts and utilize Java Graphical User Interface		
	in Program writing.		
CO2	Write, compile, execute and troubleshoot Java programming for networking		
	concepts.		
CO3	Build Java Application for distributed environment.		
CO4	Design and Develop multi-tier applications.		
CO5	Identify and Analyze Enterprise applications.		

APP TECHNOLOGIES			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Condita 02			

Course Objectives:

The learning objectives of this course are:

• To provide in depth knowledge and hands on experience in application development, the latest trends and features.

Unit -1: Android Programming Environment	Hours
Android programming environment, linking activities using intents, calling built-in	
applications using intents.	
Unit -2:User Interface	
Creating the user interface programmatically, Listening for UI notifications, build	
basic views, build picker views, build list views, Using image views, Using menus	10
with views, Saving and loading user preferences	
Unit – 3:Data	
Persisting data to files, Creating and using databases, Study Session, sharing data in	
android, Using a content provider, Creating a content provider	
Unit – 4: Networking	
SMS messaging, sending emails, Networking, displaying maps, Getting location	10
data	10
Unit – 5: Services	
Creating your own services, communicating between a service and an Activity,	
Binding Activities to Services, A complete lab work for Android service	09
development, Deploy APK files.	

Text	t(T) / Reference(R) Books:
T1	Beginning Android Application Development, Wei-Meng Lee, 1st Ed, Wiley
	Publishing.
T2	Android: A Programmers Guide, J. F. DiMarzio, McGraw Hill Education (India)
	Private Limited.1st Edition.
R1	Android for Programmers: An App-Driven Approach, Paul Deitel, 1st Edition, Pearson
	India
R2	Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India Pvt Ltd
W1	https://www.coursera.org/browse/computer-science/mobile-and-web-development
W2	https://in.udacity.com/course/new-android-fundamentalsud851

Cours	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate their understanding of the fundamentals of Android operating systems		
CO2	Demonstrate their skills of using Android software development tools		
CO3	Demonstrate their ability to develop software with reasonable complexity on mobile		
	platform		
CO4	Demonstrate their ability to deploy software to mobile devices		
CO5	Demonstrate their ability to debug programs running on mobile devices		

WEB TECHNOLOGIES			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Course Objectives:

The learning objectives of this course are:

• This course is designed to introduce students with no programming experience to the programming languages and techniques associated with the World Wide Web. The course will introduce web-based media-rich programming tools for creating interactive web pages.

Unit-1: HTML	Hours
HTML: Basic Syntax, Standard HTML Document Structure, Basic Text	
Markup, Html styles, Elements, Attributes, Heading, Layouts, Html media,	
Iframes Images, Hypertext Links, Lists, Tables, Forms, GET and POST	10
method, HTML 5, Dynamic HTML.	10
CSS: Cascading style sheets, Levels of Style Sheets, Style Specification	
Formats, Selector Forms, The Box Model, Conflict Resolution, CSS3.	
Unit -2: JSON	
Introduction to JSON: JSON, Syntax, Data Types, Schema, Security Concerns,	
JSON Vs XML, the JavaScript XML Http Request and Web APIs, JSON and	09
Client-Side Frameworks, JSON and NoSQL, JSON on the server side.	
Unit –3: YAML	
Introduction to YAML: YAML, Syntax, Structure, indentation in YAML	
documents, YAML vs JSON and XML, data types, Using advanced features	9
like anchors in a YAML.	
Unit -4: PHP	
PHP Programming: Introduction to PHP, Creating PHP script, Running PHP	
script.	
Working with variables and constants: Using variables, Using constants,	10
Data types, Operators.	10
Controlling program flow: Conditional statements, Control statements,	
Arrays, functions.	
Unit – 5: Laravel	
Introduction to Laravel, Features, routing, controllers, views, Blade template,	10
migration, Laravel Database.	10

Text	c(T) / Reference(R) Books:
T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013
T2	Web Technologies, 1st Edition 7th impression, Uttam K Roy, Oxford, 2012.
T3	Introduction to JavaScript by Lindsay Bassett, 2015.
T4	Introduction to YAML: Demystifying YAML Data Serialization Format
	by <u>Tarun Telang</u>
T5	Full-Stack Vue.Js 2 and Laravel 5: Bring the frontend and backend together with
	Vue, Vuex, and Laravel
R1	Programming world wide web, Sebesta, Pearson
R2	An Introduction to web Design and Programming, Wang, Thomson

W1	https://www.edx.org/learn/web-development
W2	https://www.javatpoint.com/what-is-json
W3	https://www.javatpoint.com/yaml-scalars
W4	https://www.javatpoint.com/laravel-blade-template

Cours	Course Outcomes: On completion of this course, students can	
CO1	To develop a dynamic webpage by the use of HTML	
CO2	To develop a dynamic webpage by the use of CSS	
CO3	To develop a dynamic webpage by the use of JSON	
CO4	To develop a dynamic webpage by the use of YML	
CO5	Build web applications using PHP	
CO6	To develop a dynamic webpage by the use of Laravel	

ARTIFICIAL INTELLIGENCE			
Subject Code	18XXCSOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits – 03			

- 1. To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written in that language
- 2. To have an understanding of the basic issues of knowledge representation and blind and heuristic search, as well as an understanding of other topics such as minimax, resolution, etc. that play an important role in AI programs
- **3.** To have a basic understanding of some of the more advanced topics of AI such as learning, natural language processing, agents and robotics, expert systems, and planning.

Unit -1: Introduction to artificial intelligence	
Introduction, history, intelligent systems, foundations of AI, applications, tic-tac-tie	09
game playing, development of AI languages, current trends in AI.	ı
Unit -2: Problem solving: state-space search and control strategies	
Introduction, general problem solving, characteristics of problem, exhaustive	10
searches, heuristic search techniques, iterative deepening a*, constraint satisfaction.	1
Unit – 3:Problem reduction, Game playing	
Problem Reduction: Introduction, Problem reduction using AO* algorithm, Towers	10
of Hanoi problem, Matrix Multiplication problem game playing, alpha-beta	10
pruning, two-player perfect information games.	1
Unit – 4: Logic Concepts & Knowledge Representation Techniques	
Logic Concepts: Introduction, propositional calculus, propositional logic, natural	ı
deduction system, axiomatic system, semantic tableau system in proportional logic,	ı
resolution refutation in proportional logic, predicate logic.	10
Introduction to KR techniques, conceptual dependency theory, script structure, cyc	ı
theory, case grammars, semantic web.	
Unit – 5: Expert systems and its applications	
Introduction phases in building expert systems, expert system versus traditional	
systems, rule-based expert systems, blackboard systems, truth maintenance systems,	09
application of expert systems, list of shells and tools.	i

Text	(T) / Reference(R) Books:
T1	Artificial Intelligence- Saroj Kaushik, CENGAGE Learning
T2	Artificial intelligence, A modern Approach, 2nded, Stuart Russel, Peter Norvig, PEA
T3	Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair, 3rded, TMH
T4	Introduction to Artificial Intelligence, Patterson, PHI
R1	Artificial intelligence, structures and Strategies for Complex problem solving, -George
	F Lugar, 5thed, PEA
R2	Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer
R3	Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier
R4	AI: A Modern Approach, Stuart Russell and Peter Norvig,
	Additional Readings: Marr, Bishop, occasionally others
W1	https://www.edx.org/learn/artificial-intelligence
W2	https://www.coursera.org/courses?query=artificial%20intelligence

Cours	se Outcomes: On completion of this course, students can
CO1	To introduce basic concepts of AI with its working principles.
CO2	To understand different kinds of heuristic search algorithms to get feasible solution for
	AI problems.
CO3	To understand problem reduction concepts using various problem reduction
	techniques. (Ex: Problem reduction using AO* algorithm, Towers of Hanoi problem,
	Matrix Multiplication problem)
CO4	To understand various Knowledge Representation (KR) techniques
CO5	To understand different kinds of Expert Systems.

Open Elective Courses Offered by ECE To other Departments

Open Electives Courses Offered by the ECE to other Departments

S.No	Subject Code	Name of the subject	L	T	P	Cr
1.	18XXECOX0XA	VLSI Design	3	0	0	3
2.	18XXECOX0XB	HDL Programming for IC Design	3	0	0	3
3.	18XXECOX0XC	Principles of Communication Systems	3	0	0	3
4.	18XXECOX0XD	Transducers and Sensors	3	0	0	3
5.	18XXECOX0XE	Fundamentals of Microprocessors and Microcontrollers	3	0	0	3
6.	18XXECOX0XF	Fundaments of Internet of Things	3	0	0	3
7.	18XXECOX0XG	Fundamentals of Digital Image Processing	3	0	0	3
8.	18XXECOX0XH	Signals and Systems	3	0	0	3

VLSI DESIGN				
	(Open Elective)			
Subject Code	18XXECOX0XA	Internal Marks	30	
Number of Lecture Hours/Week	03	External Marks	70	
Total Number of Lecture Hours	48	Exam Hours	03	
	C 114 0.2			

Course Objectives:

This course will enable students to

- 1. To learn about various fabrication steps of IC and electrical properties of MOSFET.
- 2. To learn about specific rules to draw the stick diagrams and Layouts.
- 3. To analyze circuit concepts and to apply Scaling factors for Device parameters.
- 4. To learn concept of chip I/O and techniques of testability.
- 5. To learn about different FPGA designs and implementation

Unit -1	Hours
Introduction and Basic Electrical Properties of MOS Circuits: Introduction to	
IC technology, Fabrication process: nMOS, pMOS and CMOS. Ids versus Vds	
Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor	
Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-	10
down Ratio for nMOS inverter driven by another nMOS inverter, and through one	10
or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latch-	
up in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and	
BiCMOS technology.	
Unit -2	
MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams,	
Design Rules and Layout, General observations on the Design rules, 2µm Double	
Metal, Double Poly, CMOS/BiCMOS rules, 1.2μm Double Metal, Double Poly	10
CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter,	
Symbolic Diagrams Translation to Mask Form.	
Unit -3	
Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to	
MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of	
capacitance, some area Capacitance Calculations, The Delay Unit, Inverter Delays,	
driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of	
layers.	10
Scaling of MOS Circuits: Scaling models and scaling factors, Scaling factors for	
device parameters, Limitations of scaling, Limits due to sub threshold currents,	
Limits on logic levels and supply voltage due to noise and current density. Switch	
logic, Gate logic.	
Unit – 4	ı
Chip Input and Output circuits: ESD Protection, Input Circuits, Output Circuits	
and L(di/dt) Noise, On-Chip Clock Generation and Distribution.	
Design for Testability: Fault types and Models, Controllability and Observability,	10
Ad Hoc Testable Design Techniques, Scan Based Techniques and Built-In Self-	
Test techniques.	
Unit - 5	т
FPGA Design: FPGA design flow, Basic FPGA architecture, FPGA Technologies,	8
FPGA families- Altera Flex 8000FPGA, Altera Flex 10FPGA, Xilinx XC4000	

series FPGA, Xilinx Spartan XL FPGA, Xilinx Spartan II FPGAs, Xilinx Vertex FPGA.	
Total	48

On completion of the course student will be able to

- 1. Elaborate the fabrication steps of IC and electrical properties of MOSFET.
- 2. Justify the concepts of design rules during the layout of a circuit.
- 3. Apply the circuit concepts and scaling factors for device parameters.
- 4. Analyze the concepts of chip I/O and techniques of testability.
- 5. Examine commercial architectures of FPGA.

Text Books:

- 1. Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, Essentials of VLSI Circuits and Systems, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, Tata McGrawHill Education, 2003.

Reference Books:

- 1. Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, Xilinx Design Series, Pearson Education
- 2. Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, 3rd edition, David Hodges.
- 3. A. Shanthi and A. Kavita, VLSI Design, New Age International Private Limited, 2006 First Edition.

HDL PROGRAMMING FOR IC DESIGN					
	(Open Elective)				
Subject Code	Subject Code 18XXECOX0XB Internal Marks 30				
Number of Lecture Hours/Week	03	External Marks	70		
Total Number of Lecture Hours 48 Exam Hours 03					
Credits – 03					

This course will enable students to

- 1. Learn different Verilog programming constructs.
- 2. Familiarize the different levels of abstraction in Verilog HDL.
- 3. Construct digital circuits and corresponding RTL modeling using different styles along with test bench based verification.
- 4. Understand Verilog Tasks, Functions and Directives.
- 5. Understand timing and delay simulation.

Unit -1	Hours
Introduction to Verilog HDL: Verilog as HDL, Typical HDL flow, Top-Down and Bottom-up design methodology. Levels of Design Description, Simulation and Synthesis, Function Verification, Module definition. Difference between module and module instances.	10
Unit -2	
Language Constructs and Conventions: Keywords, Identifiers, White Space, Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators.	10
Unit -3 Cata Lavel Madeling: Madeling using basis Variles acts primitives. Amore of	T
Gate Level Modeling: Modeling using basic Verilog gate primitives, Array of Instances of Primitives, Design of Flip-Flops with Gate Primitives, Delay, Strengths and Construction Resolution Modeling at Dataflow Level: Continuous Assignment Structure, delay specification, expressions, vectors, operators, operands, operator types	10
Unit – 4	
Behavioral Level Modeling: Structured procedures, Initial and Always statements, blocking and non-blocking statements, delay control, generate statement, conditional statement, multiway branching, loops, sequential and parallel blocks.	10
Unit - 5	
Switch Level Modeling: Basic transistor switches, CMOS Switches, bidirectional gates, time delays with switch primitives Tasks and Functions: Difference between tasks and functions, declaration, invocation, automatic tasks and functions.	8
Total	48

On completion of the course student will be able to

- 1. Demonstrate knowledge on HDL design flow and identify the suitable abstraction level of a particular design
- 2. Memorizing the constructs and conventions used for Verilog programming
- 3. Design and develop the combinational and sequential circuits using dataflow modeling
- 4. Implement sequential logic circuits using behavioral modeling
- 5. Writing the programs more effectively using tasks and functions

Text Books:

- 1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition
- 2. T.R.Padmanabhan, B Bala Tripura Sundari, "Design Through Verilog HDL", Wiley 2009

Reference Books:

- 1. Michael D Ciletti, "Advanced Digital Design with the Verilog HDL", Xilinx Design Series, PearsonEducation.
- 2. Stephen Brown, Zvonkoc Vranesic, "Fundamentals of Digital Logic with Verilog Design", TMH, 2nd Edition.
- 3. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science + Business Media, LLC, Fifth edition

PRINCIPLES OF COMMUNICATION SYSTEMS (Open Elective) 18XXECOX0XC **Subject Code Internal Marks** 30 **Number of Lecture Hours/Week** 70 **External Marks** 03 **Total Number of Lecture Hours** 48 **Exam Hours** 03 Credits – 03 **Course Objectives:** This course will enable students to 1. Analyze the performance of angle modulated signals. 2. Characterize analog signals in time domain as random processes and noise 3. Characterize the influence of channel on analog modulated signals 4. Determine the performance of analog communication systems in terms of SNR 5. Understand the concepts of noise and signal. Unit -1 Hours **Amplitude modulation:** Introduction, Amplitude Modulation: Time & Frequency – Domain description, switching modulator, Envelop detector. **Double side band-suppressed carrier modulation:** Time and Frequency – Domain description, Ring modulator, Coherent detection, Costas Receiver, Quadrature 10 Carrier Multiplexing. Single side and vestigial side band methods of modulation: SSB Modulation, VSB Modulation, Frequency Translation, Frequency-Division Multiplexing, Theme Example: VSB Transmission of Analog and Digital Television Unit -2 Angle modulation: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, 10 Phase-Locked Loop: Nonlinear model of PLL, Linear model of PLL, Nonlinear Effects in FM Systems. The Super-heterodyne Receiver Unit -3 Random variables & process: Introduction, Probability, Conditional Probability, Random variables, Several Random Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance 10 function: Properties of autocorrelation function, Cross-correlation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidth, Noise Figure Noise in analog modulation: Introduction, Receiver Model, Noise in DSB-SC receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture 10 effect, FM threshold effect, FM threshold reduction, Pre-emphasis and De-emphasis in FM. **Unit - 5** Digital representation of an analog signals: Introduction, Why Digitize Analog Sources? The Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Position Modulation, Generation of PPM Waves, Detection of 8 PPM Waves, The Quantization Process, Quantization Noise,

48

Pulse Code Modulation: Sampling, Quantization, Encoding, Regeneration,

Total

Decoding, Filtering, Multiplexing

On completion of the course student will be able to

- 1. Analyze the performance of analog modulation schemes in time and frequency domains.
- 2. Analyze the performance of angle modulated signals.
- 3. Characterize analog signals in time domain as random processes and noise
- 4. Characterize the influence of channel on analog modulated signals
- 5. Determine the performance of analog communication systems in terms of SNR

Text Books:

- 1. H Taub& D. Schilling, Gautam Sahe, Principles of Communication Systems –TMH, 2007, 3rd Edition.
- 2. B.P. Lathi, Communication Systems-BSPublication, 20062.
- 3. Simon Haykin, Principles of Communication Systems John Wiley, 2 nd Edition

Reference Books:

- 1. George Kennedy and Bernard Davis, Electronics & Communication System –TMH 2004.
- 2. R.P. Singh, SPSapre, Communication Systems–SecondEditionTMH,2007

TRANSDUCERS AND SENSORS				
	(Open Elective)			
Subject Code	18XXECOX0XD	Internal Marks	30	
Number of Lecture Hours/Week	03	External Marks	70	
Total Number of Lecture Hours	48	Exam Hours	03	
Credits – 03				

This course will enable students to

- 1. Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- 2. Predict correctly the expected performance of various sensors
- 3. Locate different type of sensors used in real life applications and paraphrase their importance
- 4. Understand and analyze the characteristics of temperature sensors
- 5. Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers

SCHSOIS and transduccts	
	Hours
Introduction : functional elements of an instrument, generalized performance	
characteristics of instruments – static characteristics, dynamic characteristics.	
Zero order, first order, second order instruments – step response, ramp response	10
and impulse response. Response of general form of instruments to periodic input	10
and to transient input Experimental determination of measurement system	
parameters, loading effects under dynamic conditions	
Unit -2	
Transducers for motion and dimensional measurements: Relative	
displacement, translation and rotational resistive potentiometers, resistance	
strain gauges, LVDT, synchros, capacitance pickups, Piezo-electric transducers,	10
electro-optical devices, nozzle – flapper transducers, digital displacement	10
transducers, ultrasonic transducers. Magnetic and photoelectric pulse counting	
methods, relative acceleration measurements, seismic acceleration pickups,	
calibration of vibration pickups. Gyroscopic sensors	
Unit -3	
TRANSDUCERS FOR FORCE MEASUREMENT: Bonded strain guage	
transducers, Photo-electric transducers, variable reluctance pickup, torque	
measurement dynamometers.	
TRANSDUCERS FOR FLOW MEASUREMENT: Hot wire and hot-film	10
anemometers, Electro-magnetic flow meters, laser Doppler velocity meter	10
TRANSDUCERS FOR PRESSURE MEASUREMENT: Manometers, elastic	
transducers, liquid systems, gas systems, very high pressure transducers.	
Thermal conductivity gauges, ionization gauges, microphone	
Unit – 4	
TRANSDUCERS FOR TEMPERATURE MEASUREMENT: Thermal	
expansion methods, Thermometers (liquid in glass), pressure thermometers,	
Thermocouples, Materials configuration and techniques. Resistance	10
thermometers, Thermistors, junction semiconductors, Sensors, Radiation	10
methods, Optical pyrometers, Dynamic response of temperature sensors heat	
flux Sensors, Transducers for liquid level measurement, humidity, silicon and	
quartz sensors, fiber optic sensors.	
Unit - 5	

Smart sensors: Introduction, primary sensors, converters, compensation. Recent trends in sensor technology – film sensors, semiconductor IC technology, MEMS, Nano-sensors	8
Total	48

On completion of the course student will be able to

- 1. Use concepts in common methods for converting a physical parameter into an electrical quantity
- 2. Classify and explain with examples of transducers, including those for measurement of temperature, strain, motion, position and light
- 3. Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- 4. Predict correctly the expected performance of various sensors knowledge outside the classroom through design of a real-life instrumentation system
- 5. Locate different type of sensors used in real life applications and paraphrase their importance

Text Books:

- 1. Sensors and Transducers Hardcover Import, 5 December 2000by <u>Ian Sinclai</u>, newness publication.
- **2.** Sensors and Transducers , Author, Department of Cybernetics, University of Reading, UK , M. J. Usher, 1985, Springer

Reference Books:

- 1. Doebelin, E.O., "Measurement systems Application and Design", McGraw Hill.
- 2. D. Patranabis, "Sensors and Transducers", PHI, 2nd Edition.

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS (Open Elective) Subject Code 18XXECOX0XE Internal Marks 30 Number of Lecture Hours/Week 03 External Marks 70 Total Number of Lecture Hours 48 Exam Hours 03 Credits – 03

Course Objectives:

This course will enable students to

- 1. To Learn the architecture of microprocessor and microcontroller.
- 2. To know the programming of 8086
- 3. To understand the interfacing of the processors
- 4. To know Memory System and I/O Organization and its applications.
- 5. To develop Microcontroller programming for various applications

Unit -1	Hours
8085 PROCESSOR Hardware Architecture, pinouts — Functional Building Blocks of Processor — Memory organization — I/O ports and data transfer concepts, Interrupts. 8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.	10
Unit -2	
8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.	10
Unit -3	<u> </u>
8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.	10
Unit – 4	
8051 MICRO CONTROLLER Hardware Architecture, pinouts — Functional Building Blocks of Processor — Memory organization — I/O ports and data transfer concepts—Timing Diagram — Interrupts- Data Transfer, Manipulation, Control Algorithms& I/O instructions, Comparison to Programming concepts with 8085.	10
Unit – 5	
MICRO CONTROLLER PROGRAMMING & APPLICATIONS Simple programming exercises- key board and display interface –Control of servo motor stepper motor control- Application to automation systems.	8
Total	48

On completion of the course student will be able to

- 1. Understand the architecture of microprocessor and their operation.
- 2. Demonstrate programming skills in assembly language for processors and controllers.
- 3. Analyze various interfacing techniques and apply them for the design of processor/Controller based systems.
- 4. Understand 8051 architecture.
- 5. Analyze Microcontroller programming & applications

Text Books:

- 1. R.S. Gaonkar, Microprocessor Architecture Programming and Application, with 8085, Wiley Eastern Ltd., New Delhi, 2013.
- 2. A.K Ray, K.M. Bhurchandhi," Advanced Microprocessor and Peripherals", Tata McGraw Hill Publications, 2000.
- 3. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D.McKinlay; Pearson 2-Edition, 2011

Reference Books:

1. Douglas V Hall, SSSP Rao, Microprocessors and Interfacing – Programming and Hardware, Tata Mc Graw Hill Education Private Limited,3rdEdition,1994

FUNDAMENTALS OF INTERNET OF THINGS (Open Elective) Subject Code 18XXECOX0XF Internal Marks 30 Number of Lecture Hours/Week 03 External Marks 70 Total Number of Lecture Hours 48 Exam Hours 03

Credits – 03

Course Objectives:

This course will enable students to

- 1. To introduce IoT Fundamentals
- 2. To know about the IoT Characteristics.
- 3. To give the understanding of IoT Architecture overview
- 4. To understand the concepts of IoT Reference Architecture.
- 5. To know different case studies of IoT.

Unit -1	Hours
Introduction to IoT: Sensing, Actuation, Networking basics, Communication	
Protocols, Sensor Networks, Machine-to-Machine Communications, IoT	10
Definition, Characteristics. IoT Functional Blocks, Physical design of IoT,	10
Logical design of IoT, Communication models &APis.	
Unit -2	
M2M to IoT-The Vision-Introduction, From M2M to IoT, M2M towards IoT-	
the global context, A use case example, Differing Characteristics. Definitions,	10
M2M Value Chains, IoT Value Chains, An emerging industrial structure for	10
IoT.	
Unit -3	
M2M vs loT An Architectural Overview-Building architecture, Main design	
principles and needed capabilities, An IoT architecture outline, standards	10
considerations. Reference Architecture and Reference Model of IoT.	10
<u>Unit – 4</u>	
IoT Reference Architecture-Getting Familiar with IoT Architecture, Various	
architectural views of IoT such as Functional, Information, Operational and	10
Deployment. Constraints affecting design in IoT world-Introduction, Technical	10
design Constraints.	
Unit – 5	
Developing IoT solutions: Introduction to Python, Introduction to different IoT	
tools, Introduction to Arduino and Raspberry Pi, Introduction to Cloud	
Computing, Fog Computing, Connected Vehicles, Data Aggregation for the IoT	8
in Smart Cities, Privacy and Security Issues in IoT. Case Studies: Home	
Automation, Smart Health care.	
Total	48

Course outcomes:

On completion of the course student will be able to

- 1. Understand general concepts of Internet of Things (IoT)
- 2. Understand general concepts of M2M
- 3. Know the design principals of IoT
- 4. Recognize the various architectural view IoT

5. Apply the different applications of IoT

Text Books:

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-onApproach)", 1st Edition,VPT,2014
- 2. JanHoller, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of intelligence", 1st Edition, Academic Press, 2014.

- 1. Francisda Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, A press Publications, 2013
- 2. CunoPfister, Getting Started with the Internet of Things, O"ReillyMedia, 2011,ISBN:978-1-4493-9357-1

FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING (Open Elective) 18XXECOX0XG **Subject Code Internal Marks** 30 70 **Number of Lecture Hours/Week External Marks** 03 48 03 **Total Number of Lecture Hours Exam Hours** Credits – 03 **Course Objectives:** This course will enable students to 1. Know digital signal processing concepts 2. Find the DFT of the given Discrete Time Sequences 3. Impose FFT concept for solving the DFT of a sequence 4. Design Digital filters for the given specifications Know the concepts on Digital Signal Processors Unit -1 **Hours** Introduction: Introduction to Digital Signal Processing: Discrete time signals & sequences, Classification of Discrete time systems, stability of LTI systems, Response of LTI systems to arbitrary inputs. Solution of Linear constant 10 coefficient difference equations. Frequency domain representation of discrete time signals and systems. Unit -2 Discrete Fourier Transforms: Introduction, Discrete Fourier transforms of 10 standard signals, Properties of DFT, Linear filtering methods based on DFT. Unit -3 Fast Fourier transforms (FFT): Introduction, Radix-2 decimation in time FFT Algorithm (DIT-FFT), Radix-2 decimation in frequency FFT Algorithm (DIF-10 FFT), Inverse FFT. Unit - 4 Design of IIR Digital Filters: Analog filter approximations – Butter worth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples, Analog and Digital frequency transformations. 10 **Design of FIR Digital Filters:** Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques, Comparison of IIR & FIR filters **Unit - 5**

DSP Processors: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator, Modified bus structures and memory access schemes in

P-DSPs, Multiple Access Memory, Multi-ported memory, VLIW architecture,

Total

Pipelining, Special addressing modes, On-Chip Peripherals.

8

48

Course outcomes:

On completion of the course student will be able to

- 1. Interpret digital signal processing concepts and solve difference equations for analyzing Discrete Time Systems
- 2. Apply DFT for Discrete Time Sequences
- 3. Construct FFT algorithm for solving the DFT of a sequence
- 4. Construct Digital filters for the given specifications
- 5. Apply the signal processing concepts on Digital Signal Processors.

Text Books:

- 1. John G. Proakis, Dimitris G.Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", Pearson Education / PHI, 2007.
- 2. A Anand Kumar, "Digital Signal Processing", 2nd Edition, PHI Publications
- 3. B. Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", TATA McGraw Hill, 2002
- 1. Andreas Antoniou, "Digital Signal Processing", TATA McGraw Hill, 2006
- 2. Robert J. Schilling, Sandra L. Harris, "Fundamentals of Digital Signal Processing using Matlab", Thomson, 2007.

SIGNALS AND SYSTEMS (Open Elective) **Subject Code** 18XXECOX0XH **Internal Marks** 30 **Number of Lecture Hours/Week External Marks** 70 03 **Total Number of Lecture Hours** 48 **Exam Hours** 03 Credits – 03 **Course Objectives:** This course will enable students to 1. Learn various signals, systems both in continuous time and discrete time. 2. Know the Fourier analysis of continuous-time periodic signals and finite energy signals. 3. Perform signal conversion by applying sampling theorem. 4. Make use of applying various signal and system properties to LTI systems 5. Extend the transform analysis to discrete time sequences Hours Unit -1 Introduction to Signals and Systems: Definition of Signals and Systems, Singularity functions and related functions. Complex exponential and sinusoidal 8 signals. Classification of Signals, Operations on signals. Classification of Unit -2 Fourier Series: Fourier series representation of continuous time periodic signals, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series. 10 Fourier Transform: Fourier transform of arbitrary signal, Fourier transform of standard signals, properties of Fourier transforms. Unit -3 Sampling Theorem: Representation of a CT signal by its samples: The Sampling theorem, impulse sampling, Natural and Flat-top Sampling, Reconstruction of signal from its samples, effect of under sampling-Aliasing. 10 Review of Laplace Transforms, Properties, Inverse Laplace Transform, Relation between L.T and F.T of a signal. **Unit – 4** Analysis of Linear Systems: Linear Time Invariant systems, impulse response, Response of a linear system, Transfer function of a LTI system, Concept of convolution and graphical representation of convolution. Cross-correlation and 10 auto-correlation of signals, Relation between convolution and correlation. Unit - 5 **Z-Transforms:** Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence, constraints on ROC for various classes of signals, Properties of Z-transforms, Inverse Ztransform. 10 Applications of signals and Systems: Modulation for communication, Filtering

48

Total

of signals and Feedback control systems.

Course outcomes:

On completion of the course student will be able to

- 1. Understand various signals and systems and demonstrate their properties.
- 2. Develop Fourier analysis of continuous-time periodic signals and continuous-time finite energy signals.
- 3. Apply sampling theorem for signal conversion from continuous- time signals to discrete-time.
- 4. Illustrate various operations on LTI systems.
- 5. Apply z-transform to analyze discrete-time signals.

Text Books:

- 1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009.
- 2. A Anand Kumar, "Signals and Systems", PHI Publications.

- 1. B.P. Lathi, "Signal Processing & Linear Systems", 1st Edition, Oxford University Press, 2006
- 2. Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, John Wiley India, 2011.

Open Elective Courses Offered by ECT To other Departments

Open Elective Courses offered by ECT Department

S.No	Subject Code	Name of the subject	L	T	P	Cr
1	18XXETOXXXX	Signals and Systems	3	0	0	3
2	18XXETOXXXX	Principles of Signal Processing	3	0	0	3
3	18XXETOXXXX	Consumer Electronics	3	0	0	3
4	18XXETOXXXX	Transducers and Sensors	3	0	0	3
5	18XXETOXXXX	IOT and Applications	3	0	0	3
6	18XXETOXXXX	IC Applications	3	0	0	3
7	18XXETOXXXX	Principles of Communications	3	0	0	3
8	18XXETOXXXX	Data Communications	3	0	0	3
9	18XXETOXXXX	Digital Logic design	3	0	0	3
10	18XXETOXXXX	Remote Sensing and GIS	3	0	0	3

SIGNALS AND SYSTEMS (Open Elective)					
Subject Code	18XXETOXXXX	Internal Marks	30		
Number of Lecture Hours/Week	03	External Marks	70		
Total Number of Lecture Hours	48	Exam Hours	03		
Pre-requisite	Engineering Mathematics	Credits – 03			

This course will enable students to

- 1. Understand signals and systems classification
- 2. Explain convolution and representations of Systems
- 3. Understand frequency domain representation of systems
- 4. Explain the applications of Fourier representation

Unit -1	Hours
Introduction: Definitions of a signal and a system, classification of signals, basic	
Operations on signals, elementary signals, Systems viewed as Interconnections of	10
operations, properties of systems	
Unit -2	
Time-domain representations for LTI systems: Convolution, impulse response	
representation, Convolution Sum and Convolution Integral. Properties of impulse	10
response representation, Differential and difference equation Representations,	10
Block diagram representations.	
Unit -3	
Frequency-domain representation for signals: Introduction, Discrete-time and	
continuous time Fourier series (derivation of series excluded) and their properties.	10
Discrete-time and continuous-time Fourier transforms (derivations of transforms	10
are excluded) and their properties.	
Unit – 4	
Applications of Fourier representations: Introduction, Frequency response of	
LTI systems, Fourier transform representation of periodic signals, Fourier	9
transform representation of discrete time signals.	
Unit – 5	
LAPLACE & Z-TRANSFORMS: Introduction, Concept of region of	
convergence (ROC) for Laplace transforms, constraints on ROC for various	
classes of signals, Properties of L.T's, Inverse Laplace transform, Relation	
between L.T's, and F.T. of a signal. Z-Transforms: Introduction, Z-transform,	9
properties of ROC, properties of Z – transforms, inversion Z-transforms. Z-	
Transform analysis of LTI Systems, unilateral Z-Transform and its application to	
solve difference equations	

Course outcomes: Students will be able to

- 1. Understand signal and its basic operations
- 2. Understand linear time invariant systems.
- 3. Apply the concepts of Fourier series representations to analyze continuous and discrete time periodic signals.
- 4. Understand and apply the continuous time Fourier transform, discrete time Fourier transform,
- 5. Apply the concepts of Laplace transform, and z-Transform to the analysis and description of LTI continuous and discrete-time systems

Text Books:

1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", Pearson, 2

- nd Edn.G. Streetman and S. K. Banerjee, "Solid State Electronic Devices", 2ndedition, Pearson, 2014.
- 2. B. P. Lathi, "Linear Systems and Signals", Second Edition, Oxford University Press
- 3. Simon Haykin and Van Veen, "Signals & Systems", Wiley, 2nd Edition.

- 1. Michel J. Robert, "Fundamentals of Signals and Systems", MGH International Edition, 2008.
- 2. Ramakrishna Rao, "Signals and Systems", 2008, TMH

PRINCIPLES OF SIGNAL PROCESSING (Open Elective)						
Subject Code	Subject Code 18XXETOXXXX Internal Marks 30					
Number of Lecture Hours/Week 03 External Marks 70						
Total Number of Lecture Hours 48 Exam Hours 03						
Pre-requisite	Signals and Systems	Credits – 03	3			

This course will enable students to

- 1. Understand discrete signals and systems, DIT algorithms
- 2. Explain the structures of IIR filters by bilinear transformation
- 3. Explain the structures of FIR filters by window techniques
- 4. Explain the concept of multirate signal processing and adaptive filters

Unit -1	Hours
Discrete Signals and Systems - A Review – Introduction to DFT – Properties of	
DFT - Circular Convolution - Filtering methods based on DFT - FFT	
Algorithms –Decimation in time Algorithms, Decimation in frequency	
Algorithms – Use of FFT in Linear Filtering.	10
Unit -2	
Structures of IIR filters – Analog filter design – Discrete time IIR filter from	10
analog filter – IIR filter design by Impulse Invariance, Bilinear transformation.	
Unit -3	
Structures of FIR filters – Linear phase FIR filter – Filter design.	
Design using windowingtechniques (Rectangular Window, Hamming	9
Window, Hanning Window), Frequency sampling techniques	
Unit – 4	
Multirate signal processing: Basic building blocks of multirate DSP,	10
Decimation, Interpolation, Sampling rate conversion by a rational factor,	10
Multistage Sampling Rate Converters.	
Unit – 5	
Adaptive Filters: Introduction, LMS and RLS Adaptation Algorithms,	9
Applications of adaptive filtering to equalization, noise cancellation.	9

Course Outcomes:

The student will be able to

- 1. Use the FFT algorithm for solving the DFT of a given signal
- 2. Design a Digital filter (FIR&IIR) from the given specifications
- 3. Realize the FIR and IIR structures from the designed digital filter.
- 4. Use the Multirate Processing concepts in various applications.
- 5. Apply the Adaptive signal processing concepts to various signal processing applications

Text Books:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PH

- 1. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- 2. Understanding Digital Signal Processing 2nd Edition by Richard G.Lyons

CONSUMER ELECTRONICS (Open Elective)					
Subject Code	18XXETOXXXX	Internal Marks	30		
Number of Lecture Hours/Week	03	External Marks	70		
Total Number of Lecture Hours 48 Exam Hours 03					
Pre-requisite	Analog Communications	Credits – 03	3		

This course will enable students to

- 1. Understand the significance of audio systems
- 2. Explain the digital audio fundamentals and operation
- 3. Explain the operation of digital transmission and reception
- 4. Understand the need for different type of appliances

Unit -1	Hours
Audio Systems: Microphones and Loudspeakers: Carbon, moving coil, cordless	
microphone, Direct radiating and horn loudspeaker, Multi-speaker system, Hi-Fi	
stereo and dolby system. Concept to fidelity, Noise and different types of	10
distortion in audio system	
Unit -2	
Digital Audio Fundamentals: Audio as Data and Signal, Digital Audio	
Processes Outlined, Time Compression and Expansion.	9
Unit -3	
SCR and Thyristor: Principles of operation and characteristics of SCR,	
Triggering of Television: Basics of Television: Elements of TV communication	
system, Scanning and its need, Need of synchronizing and blanking pulses,	10
VSB, Composite Video Signal.	
Colour Television: Primary, secondary colours, Concept of Mixing, Colour	
Unit – 4	
Digital Transmission and Reception: Digital satellite television, Direct-To-	
Home(DTH) satellite television, Introduction to :Video on demand, CCTV,	
High Definition(HD)-TV. Introduction to Liquid Crystal and LED Screen	10
Televisions Basic block diagram of LCD and LED Television and their	
comparison	
Unit – 5	
Introduction to different type of domestic/commercial appliances: Operation	
of Micro-wave oven, Food Processors, Digital Electronic Lock, Vacuum	09
cleaner, Xerox Machine, scanner	

Course Outcomes:

Student will be able to

- 1. Understand the various type of microphones and loud speakers.
- 2. To identify the various digital and analog signal.
- 3. Describe the basis of television and composite video signal.
- 4. Describe the various kind of colour TV standards and system.
- 5. Compare the various types of digital TV system.
- 6. Understand the various type of consumer goods.

Text Books:

- 1. Modern Television Practice by R. R. Gulai; New Age International Publishers.
- 2. Audio Video Systems by R. G. Gupta; McGraw Hill Education System.

3. Audio Video Systems Principles Practices and Troubleshooting by Bali & Bali; Khanna Publishing Company

Reference Books:

1. Consumer Electronics by S. P. Bali; Pearson Education, New Delhi

TRANSDUCERS AND SENSORS (Open Elective)					
Subject Code	18XXETOXXXX	In	ternal Marks	30	
Number of Lecture Hours/Week	03	Ex	ternal Marks	70	
Total Number of Lecture Hours	48	Ex	am Hours	03	
Pre-requisite	EMI		Credits – 03		

This course will enable students to

- 1. Understand measurements and instrumentation and its need.
- 2. Explain the Characteristics of Transducers.
- 3. Explain the Characteristics of resistive, inductive and capacitive transducers

Unit -1	Hours
Measurements and Instrumentation of Transducers: Measurements – Basic	
method of measurement – Generalized scheme for measurement systems – Units	l
and standards – Errors – Classification of errors, error analysis – Statistical	10
methods - Sensor - Transducer - Classification of transducers - Basic	l
requirement of transducers.	l
Unit -2	
Characteristics of Transducers: Static characteristics – Dynamic	
characteristics - Mathematical model of transducer - Zero, first order and	10
second order transducers – Response to impulse, step, ramp and sinusoidal	10
inputs	l
Unit -3	
Resistive Transducers: Potentiometer –Loading effect – Strain gauge –	
Theory, types, temperature compensation – Applications	0
Torque measurement – Proving Ring – Load Cell – Resistance thermometer –	9
Thermistors materials – Constructions, Characteristics – Hot wire anemometer	l
Unit – 4	
Inductive and Capacitive Transducer: Self inductive transducer – Mutual	
inductive transducers – Linear Variable Differential Transformer – LVDT	l
Accelerometer – RVDT – Synchros – Microsyn – Capacitive transducer –	10
Variable Area Type – Variable Air Gap type – Variable Permittivity type –	l
Capacitor microphone.	l
Unit – 5	
Miscellaneous Transducers: Piezoelectric transducer – Hall Effect transducers	
– Smart sensors – Fiber optic sensors – Film sensors – MEMS – Nano sensors,	09
Digital transducers	l
Course Outcomes	

Course Outcomes:

At the end of the course, a student will be able to:

- 1. Use concepts in common methods for converting a physical parameter into an electrical quantity
- 2. Classify and explain with examples of transducers, including those for measurement of temperature, strain, motion, position and light
- 3. Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- 4. Predict correctly the expected performance of various sensors
- 5. Locate different type of sensors used in real life applications and paraphrase their importance

- 6. Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers
- 7. develop professional skills in acquiring and applying the knowledge outside the classroom through design of a real-life instrumentation system

Text Books:

- 1. Sawhney. A.K, "A Course in Electrical and Electronics Measurements and Instrumentation", 18th Edition, Dhanpat Rai & Company Private Limited, 2007.
- 2. Patranabis. D, "Sensors and Transducers", Prentice Hall of India, 2003.

- 1. Renganathan. S, "Transducer Engineering", Allied Publishers, Chennai, 2003.
- 2. Doebelin. E.A, "Measurement Systems Applications and Design", Tata McGraw Hill, New York, 2000
- 3. John. P, Bentley, "Principles of Measurement Systems", III Edition, Pearson Education, 2000.
- 4. Murthy. D. V. S, "Transducers and Instrumentation", Prentice Hall of India, 2001. 4. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- 5. Instrument Transducers An Introduction to their Performance and design by Herman K. P. Neubrat, Oxford University Press

IOT AND APPLICATIONS (Open Elective)				
Subject Code	18XXETOXXXX	Internal Marks	30	
Number of Lecture Hours/Week	03	External Marks	70	
Total Number of Lecture Hours 48 Exam Hours 03				
Pre-requisite Credits – 03				

This course will enable students to

- 1. Understand the IoT and its role in cloud computing.
- 2. Understand the elements and application development using IoT.
- 3. Explain the solution framework for IoT applications
- 4. Analyze the IoT Case Studies.

Unit -1	Hours
Introduction to IoT: Introduction to IoT, Architectural Overview, Design principles and needed capabilities, Basics of Networking, M2M and IoT Technology Fundamentals- Devices and gateways, Data management, Business processes in IoT, Everything as a Service (XaaS), Role of Cloud in IoT, Security aspects in IoT.	10
Unit -2	
Elements of IoT: Hardware Components- Computing- Arduino, Raspberry Pi, ARM Cortex-A class processor, Embedded Devices – ARM Cortex-M class processor, Arm Cortex-M0 Processor Architecture, Block Diagram, Cortex-M0 Processor Instruction Set, ARM and Thumb Instruction Set.	10
Unit -3	
IoT Application Development: Communication, IoT Applications, Sensing, Actuation, I/O interfaces. Software Components- Programming API's (using Python/Node.js/Arduino) for Communication Protocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth. Bluetooth Smart Connectivity Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth, Low Energy Architecture, PSoC4 BLE architecture and Component Overview.	9
Unit – 4	
Solution framework for IoT applications: Implementation of Device integration, Data acquisition and integration, Device data storage-Unstructured data storage on cloud/local server, Authentication, authorization of devices.	10
Unit - 5	
IoT Case Studies: IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, Home Automation. Cloud Analytics for IoT Application: Introduction to cloud computing, Difference between Cloud Computing and Fog Computing: The Next Evolution of Cloud Computing, Role of Cloud Computing in IoT, Connecting IoT to cloud, Cloud Storage for IoT Challenge in integration of IoT with Cloud.	9

Course Outcomes:

The student will be able to:

- 1. Understand internet of Things and its hardware and software components.
- 2. Interface I/O devices, sensors & communication modules.
- 3. Remotely monitor data and control devices.
- 4. Design real time IoT based applications.
- 5. Design the real case studies.

Text Books:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017.
- 2. The Definitive Guide to the ARM Cortex-M0 by JosephYiu,2011
- 3. Vijay Madisetti, Arshdeep Bahga, Internet of Things, "A Hands on Approach", UniversityPress,2015

- 1. CypressSemiconductor/PSoC4BLE(BluetoothLowEnergy)ProductTrainingModules.
- 2. PethuruRajandAnupamaC.Raman, "TheInternetofThings:EnablingTechnologies,Platforms,andUse Cases", CRCPress, 2017.

	IC APPLICATIONS (Open Elective)			
Subject Code	18XXETOXXXX	In	ternal Marks	30
Number of Lecture Hours/Week	03	Ex	ternal Marks	70
Total Number of Lecture Hours	48	Ex	am Hours	03
Pre-requisite	Analog Circuits, DSD		Credits – 03	3

This course will enable students to

- 1. Understand the ideal op-amp and practical op-amp.
- 2. Understand 555 timer and IC565 VCO and its application.
- 3. Explain the DAC and ADC techniques and its specifications.
- 4. Explain the Use of TTL-74XX Series & CMOS 40XX Series ICs

Unit -1	Hours
Ideal and Practical Op-Amp, Op-amp characteristics-DC and AC	
Characteristics, General Linear Applications of Op-Amp: Adder, Subtractor,	10
Differentiators and Integrators, Active Filters and Oscillators, Nonlinear	10
Applications of OPAMP: Comparators, Schmitt Trigger, Multivibrators	
Unit -2	
Introduction to 555 Timer, Functional Diagram, Monostable and Astable	
Operations and Applications, Schmitt Trigger, PLL- Introduction, Block	10
Schematic, Principles and Description of individual Blocks of 565, VCO.	
Unit -3	
Introduction, Basic DAC Techniques - Weighted Resistor Type. R-2R Ladder	
Type, inverted R-2R Type.	
Different types of ADCs - Parallel Comparator Type. Counter Type. Successive	9
Approximation Register Type and Dual Slope Type DAC and ADC	
Specifications.	
Unit – 4	
Use of TTL-74XX Series & CMOS 40XX Series ICs, TTL ICs - Code	
Converters, Decoders, Demultiplexer, Encoders, Priority Encoders, multiplexers	
& their applications. Priority Generators, Arithmetic Circuit ICs-Parallel Binary	10
Adder/Subtractor Using 2's Complement System, Magnitude Comparator	
Circuits.	
Unit - 5	
Commonly Available 74XX & CMOS 40XX Series ICs - RS, JK. JK Master-	
Slave. D and T Type Flip-Flops & their Conversions, Synchronous and	09
asynchronous counters. Decade counters. Shift Registers & applications	

Course Outcomes:

The student will be able to

- 1. Analyze the Differential Amplifier with Discrete components
- 2. Describe the Op-Amp and internal Circuitry: 555 Timer, PLL
- 3. Discuss the Applications of Operational amplifier: 555 Timer, PLL
- 4. Design the digital application using digital ICs
- 5. Use the Op-Amp in A to D & D to A Converters

Text Books:

- 1. Linear Integrated Circuits -D. Roy Chowdhury, New Age International (p)Ltd, 3" Ed., 2008.
- 2. Digital Fundamentals Floyd and Jain, Pearson Education, 8th Edition, 2005.

- 1. Modern Digital Electronics RP Jain 4/e TMH, 2010.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 1987

PRINCIPLES OF COMMUNICATION SYSTEMS		
	(Open Elective)	
Subject Code	18XXETOXXXX	Internal Marks 30
Number of Lecture Hours/Week	03	External Marks 70
Total Number of Lecture Hours	48	Exam Hours 03
Pre-requisite	Signals and Systems	Credits – 03

This course will enable students to

- 1. Understand modulation techniques in time and frequency domain
- 2. Explain angle modulation and signal sampling.
- 3. Analyze noise in analog modulation systems
- 4. Understand Transmission of Binary Data in Communication Systems

Unit -1	Hours
Amplitude modulation: Introduction, Amplitude Modulation: Time & Frequency –	
Domain description, switching modulator, Envelop detector. Double side band-	
suppressed carrier modulation: Time and Frequency – Domain description, Ring	
modulator, Coherent detection, Costas Receiver, Quadrature Carrier Multiplexing.	10
Single side-band and vestigial sideband methods of modulation: SSB Modulation,	
VSB Modulation, Frequency Translation, Frequency- Division Multiplexing, Theme	
Example: VSB Transmission of Analog and Digital Television	
Unit -2	
Angle modulation: Basic definitions, Frequency Modulation: Narrow Band FM,	
Wide Band FM, Transmission bandwidth of FM Signals, Generation of FM Signals,	9
Demodulation of FM Signals, FM Stereo Multiplexing,	
Unit -3	
Signal Sampling and Analog Pulse Communication: Ideal Sampling, Pulse	
Amplitude Modulation, Pulse Width Modulation, Pulse Position Modulation.	
Digital Communication Techniques: Quantization, Digital Transmission of Data,	9
Parallel and Serial Transmission, Data Conversion, Pulse Code Modulation, Delta	
Modulation.	
Unit – 4	
Noise in analog modulation: Introduction, Receiver Model, Noise in DSB-SC	
receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture	10
effect, FM threshold effect, FM threshold reduction, Pre-emphasis and De-emphasis	10
in FM.	
Unit – 5	
Transmission of Binary Data in Communication Systems: Digital Codes,	
Principles of Digital Transmission, Transmission Efficiency, Modem Concepts and	10
Methods – FSK, BPSK, Error Detection and Correction	

Course Outcomes:

The student will be able to

- 1. Analyze the performance of analog modulation schemes in time and frequency domains.
- 2. Analyze the performance of angle modulated signals.
- 3. Characterize analog signals in time domain as random processes and noise
- 4. Characterize the influence of channel on analog modulated signals
- 5. Determine the performance of analog communication systems in terms of SNR

6. Analyze pulse amplitude modulation, pulse position modulation, pulse code modulation and TDM systems

Text Books:

- 1. Principles of Communication Systems H Taub& D. Schilling, GautamSahe, TMH, 2007, 3rdEdition.
- 2. Communication Systems B.P. Lathi, BS Publication, 2006.

- 1. Principles of Communication Systems Simon Haykin, John Wiley, 2nd Edition.
- 2. Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- 3. Communication Systems–R.P. Singh, SP Sapre, Second Edition TMH,2007.

DAT	TA COMMUNICATIONS (Open Elective)		
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Pre-requisite	Communication	Credits – 03	

This course will enable students to

- 1. Understand the concept of data communications and network connection.
- 2. Explain the operation of data link layer and network layer.
- 3. Understand the operation of transport layer and IP.4. Explain the application layer and Principles of Networking Applications.

4. Explain the application layer and Principles of Networking Applications.	
Unit -1	Hours
Introduction to Data Communications: Components, Data Representation,	
Data Flow, Networks Distributed Processing, Network Criteria, Physical Structures, Network Models, Categories of Networks Interconnection of Networks, The Internet - A Brief History, The Internet Today, Protocol and Standards - Protocols, Standards, Standards Organizations, Internet Standards. Network Models, Layered Tasks, OSI model, Layers in OSI model, TCP/IP Protocol Suite, Addressing Introduction, Wireless Links and Network Characteristics, WiFi: 802.11 Wireless LANs -The 802.11 Architecture,	10
Unit -2	
Data Link Layer: Links, Access Networks, and LANs- Introduction to the Link Layer, The Services Provided by the Link Layer, Types of errors, Redundancy, Detection vs Correction, Forward error correction Versus Retransmission Error-Detection and Correction Techniques, Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC), Framing, Flow Control and Error Control protocols, Noisy less Channels and Noisy Channels, HDLC, Multiple Access Protocols, Random Access, ALOHA, Controlled access, Channelization Protocols. 802.11 MAC Protocol, IEEE 802.11 Frame.	10
Unit -3	
The Network Layer: Introduction, Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks-Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks, Inside a Router-Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane. The Internet Protocol(IP): Forwarding and Addressing in the Internet Datagram format, Ipv4 Addressing, Internet Control Message Protocol(ICMP), IPv6	9
Unit – 4	
Transport Layer: Introduction and Transport Layer Services: Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing, Connectionless Transport: UDP - UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR), Connection Oriented Transport: TCP - The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management, Principles of Congestion Control - The Cause and the	10

Costs of Congestion, Approaches to Congestion Control	
Unit - 5	
Application Layer: Principles of Networking Applications – Network	
Application Architectures, Processes Communicating, Transport Services	
Available to Applications, Transport Services Provided by the File Transfer:	9
FTP,- FTP Commands and Replies, Electronic Mail in the Internet- STMP,	9
Comparison with HTTP, DNS-The Internet's Directory Service - Service	
Provided by DNS, Overview of How DNS Works, DNS Records and messages.	

Course Outcomes:

- 1. Know the Categories and functions of various Data Communication Networks
- 2. Design and analyze various error detection techniques.
- 3. Demonstrate the mechanism of routing the data in network layer
- 4. Know the significance of various Flow control and Congestion control Mechanisms

Text Books:

- 1. Computer Networking A Top-Down Approach Kurose James F, Keith W, 6thEdition, Pearson, 2017.
- 2. Data Communications and Networking Behrouz A.Forouzan4th Edition McGraw Hill Education, 2017.

- 1. Data communication and Networks Bhusan Trivedi, Oxford university press, 2016
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education, 2003.
- 3. Understanding Communications and Networks, 3 rd Edition, W.A.Shay, Cengage Learning, 2003.

DIC	GITAL LOGIC DESIGN (Open Elective)			
Subject Code	18XXETOXXXX	In	ternal Marks	30
Number of Lecture Hours/Week	03	Ex	ternal Marks	70
Total Number of Lecture Hours	48	Ex	am Hours	03
Pre-requisite			Credits – 03	3

This course will enable students to

- 1. Understand the number system and codes.
- 2. Explain the minimization techniques with four variables and single function.
- 3. Understand the logic circuits design using MSI and LSI
- 4. Explain the operation of sequential and combinational circuit design.

Unit -1	Hours
REVIEW OF NUMBER SYSTEMS & CODES: Representation of numbers	
of different radix, conversation from one radix to another radix, r-1's	
compliments and r's compliments of signed members, Gray code ,4 bit codes;	
BCD, Excess-3, 2421, 84-2-1 code etc. Error detection & correction codes:	
parity checking, even parity, odd parity, Hamming code. BOOLEAN	
THEOREMS AND LOGIC OPERATIONS: Boolean theorems, principle of	0
complementation & duality, De-Morgan theorems, Logic operations; Basic logic	9
operations -NOT, OR, AND, Universal Logic operations, EX-OR, EX- NOR	
operations. Standard SOP and POS Forms, NAND-NAND and NOR-NOR	
realizations, Realization of three level logic circuits. Study the pin diagram and	
obtain truth table for the following relevant ICs	
7400,7402,7404,7408,7432,7486.	
Unit -2	
MINIMIZATION TECHNIQUES: Minimization and realization of switching	
functions using Boolean theorems, K-Map (up to 6 variables) and tabular	
method(Quine-mccluskey method) with only four variables and single function.	
COMBINATIONAL LOGIC CIRCUITS DESIGN: Design of Half adder, full	10
adder, half subtractor, full subtractor, applications of full adders; 4-bit adder-	10
subtractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-a-	
head adder circuit, Design code converts using Karnaugh method and draw the	
complete circuit diagrams.	
Unit -3	
COMBINATIONAL LOGIC CIRCUITS DESIGN USING MSI &LSI:	
Design of encoder ,decoder, multiplexer and de-multiplexers, Implementation of	
higher order circuits using lower order circuits . Realization of Boolean	
functions using decoders and multiplexers, Design of Priority encoder, 4-bit	10
digital comparator and seven segment decoder Study the relevant ICs pin	10
diagrams and their functions 7442,7447,7485,74154.	
INTRODUCTION OF PLD's: PLDs: PROM, PAL, PLA -Basics structures,	
realization of Boolean functions, Programming table.	
Unit – 4	
SEQUENTIAL CIRCUITS I: Classification of sequential circuits	
(synchronous and asynchronous), operation of NAND & NOR Latches and flip-	
flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop,	10
D flip-flop with reset and clear terminals. Conversion from one flip-flop to	
another flip- flop, Design of 5ripple counters, design of synchronous counters,	

Johnson counter, ring counter. Design of registers - Buffer register, control	
buffer register, shift register, bi-directional shift register, universal shift, register,	
Study the following relevant ICs and their relevant functions	
7474,7475,7476,7490,7493,74121.	
Unit - 5	
SEQUENTIAL CIRCUITS II :Finite state machine; state diagrams, state	
tables, reduction of state tables. Analysis of clocked sequential circuits Mealy to	
Moore conversion and vice-versa, Realization of sequence generator, Design of	9
Clocked Sequential Circuit to detect the given sequence (with overlapping or	
without overlapping)	

Course Outcomes:

The student will be able to

- 1. Classify different number systems and apply to generate various codes.
- 2. Use the concept of Boolean algebra in minimization of switching functions
- 3. Design different types of combinational logic circuits.
- 4. Apply knowledge of flip-flops in designing of Registers and counters
- 5. The operation and design methodology for synchronous sequential circuits and algorithmic state machines
- 6. Produce innovative designs by modifying the traditional design techniques

Text Books:

- 1. Switching and finite automata theory Zvi.KOHAVI, Niraj.K. Jha 3rdEdition, Cambridge UniversityPress,2009
- 2. Digital Design by M.Morris Mano, Michael D Ciletti,4th edition PHIpublication,2008
- 3. Switching theory and logic design by Hill and Peterson, Mc-Graw Hill TMH edition, 2012.

- 1. Fundamentals of Logic Design by Charles H.RothJr, Jaico Publishers, 2006
- 2. Digital electronics by R S Sedha.S.Chand&companylimited,2010
- 3. Switching Theory and Logic Design by A.Anand Kumar, PHILearning pvtltd, 2016.
- 4. Digital logic applications and design by John M Yarbough, Cengagelearning, 2006.
- 5. TTL74-Seriesdatabook.

REMOTE SENSING AND GIS				
	(Open Elective)			
Subject Code	18XXETOXXXX	Internal Mark	S	30
Number of Lecture Hours/Week	03	External Marl	ks	70
Total Number of Lecture Hours	48	Exam Hours		03
Pre-requisite		Credit	s - 03	
Course Objectives:				
This course will enable students to				
1. Understand the concept of photo	grammetry and its significan	ce.		
2. Explain the basic concept of remo	ote sensing and limitations.			
3. Understand the vector data model	and topology rules.			
4. Explain the raster data model, ele	ements and importance of sou	irce map and data	editing	3
Unit -1			Hou	ırs
Introduction to Photogrammetry				
geometry of vertical aerial photograph, Scale & Height measurement on single				
vertical aerial photograph, Height measurement based on relief displacement,			06)
Fundamentals of stereoscopy, fid	ucial points, parallax mea	surement using		
fiducial line.				
Unit -2				
Remote Sensing: Basic concept	<u> </u>	· ·		
	Remote sensing data Collection, Remote sensing advantages & Limitations,			
Remote Sensing process. Electrom				
atmosphere and with earth surface	, , ,	* *	10)
Satellites and Sensors characteristi	-	_		
color composite, introduction to di	gital data, elements of visus	al interpretation		
techniques.				
Unit -3				

Remote Sensing: Basic concept of remote sensing, Data and Information, Remote sensing data Collection, Remote sensing advantages & Limitations, Remote Sensing process.

Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, vegetation), Indian Satellites and Sensors characteristics, Resolution, Map and Image and False color composite, introduction to digital data, elements of visual interpretation techniques.

Unit – 4

Omt = 4

Vector Data Model: Representation of simple features- Topology and its importance; coverage and its data structure, Shape file; Data models for composite features Object Based Vector Data Model; Classes and their Relationship; The geobase data model; Geometric representation of Spatial Feature and data structure, Topology rules

Unit – 5

Raster Data Model: Elements of the Raster data model, Types of Raster Data, Raster Data Structure, Data Conversion, Integration of Raster and Vector data. Data Input: Metadata, Conversion of Existing data, creating new data; Remote Sensing data, Field data, Text data, Digitizing, Scanning, on screen digitizing, importance of source map, Data Editing

09

10

Course Outcomes:

The student will be able to

- 1. Retrieve the information content of remotely sensed data
- 2. Analyze the energy interactions in the atmosphere and earth surface features
- 3. Interpret the images for preparation of thematic maps
- 4. Apply problem specific remote sensing data for engineering applications
- 5. Analyze spatial and attribute data for solving spatial problems
- 6. Create GIS and cartographic outputs for presentation

Text Books:

- 1. Remote Sensing and GIS Lillesand and Kiefer, John Willey 2008.
- 2. Remote Sensing and GIS B. Bhatta by Oxford Publishers 2015.
- 3. Introduction to Geographic Information System Kang-Tsung Chang, McGraw-Hill 2015

- 1. Concepts & Techniques of GIS by C. P. Lo Albert, K.W. Yonng, Prentice Hall (India) Publications. 2. Principals of Geo physical Information Systems Peter A Burragh and Rachael A. Mc Donnell, Oxford Publishers 2004.
- 3. Basics of Remote sensing & GIS by S. Kumar, Laxmi Publications

Open Elective Courses Offered by EEE To other Departments

Open Electives offered by EEE department

S. No	Subject Code	Subject title
1	18XXEEOM0XA	Control system design
2	18XXEEOM0XB	Optimization techniques
3	18XXEEOM0XC	Electrical Energy Conservation And Auditing
4	18XXEEOM0XD	Electrical and Hybrid Vehicles
5	18XXEEOM0XE	Intelligent control & its applications
6	18XXEEOM0XF	Electrical materials
7	18XXEEOM0XG	Industrial Electrical Systems
8	18XXEEOM0XH	Advanced Control Systems

CONT	ROL SYSTEM DESIGN		
	(Open Elective)		
Subject Code	18XXEEOM0XA	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits = 03			

This course will enable student to

- 1. Explain the concepts of design problem and various design specifications.
- 2. Discuss the design of compensator for both time and frequencydomain specifications.
- 3. Explain the design of various controllers.
- 4. Understand the concept on feed-forward control.
- 5. Apply the knowledge of design using statespace
- 6. Understand the methods of solving Non-linear system of equations.

Unit 1: Design Specifications	Hours
Introduction to design problem and philosophy. Introduction to time domain and frequency domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response.	10
Unit 2: Design of Classical Control System in the time domain and Frequency domain	
Introduction to compensator. Design of Feedback and Feed forward compensators, Feedback compensation. Realization of compensators. Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using Bode diagram.	10
Unit 3: Design of PID controllers Design of P, PI, PD and PID controllers in time domain and frequency domain for	00
first, second and third order systems. Control loop with auxiliary feedback – Feed forward control.	09
Unit 4: Control System Design in state space	
Review of state space representation. Concept of controllability & observability, effect of pole zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Full order, Reduced order observer. Separation Principle.	10
Unit 5: Design of control for Non LinearSystems	
Introduction, Methods of solving Non-linear systems of equations. Pseudo-composition, weight function procedure, Technique for extending scalar methods to the multidimensional case in a nontrivial way	09

Course outcomes:

On completion of the course student will be able to:

- 1. Elaborate the concepts of various designing fundamentals.
- 2. Apply the basic design in both time and frequency domain
- 3. Understand the concepts of PID controllers
- 4. Apply the knowledge of design using state space
- 5. Illustrate the basic concepts of nonlinearities and their performance
- 6. Discuss the concepts of singular points and performance of system

Text Books:

- 1. N.Nise, "ControlsystemEngineering", JohnWiley, 2000.
- 2. I.J.NagrathandM.Gopal, "Controlsystemengineering", Wiley, 2000.
- 3. M.Gopal, "DigitalControlEngineering", WileyEastern, 1988.
- 4. K.Ogata, "ModernControlEngineering", PrenticeHall, 2010.

- 1. B. C. Kuo, "Automatic Control system", PrenticeHall,1995.
- 2. J. J. D'Azzo and C. H. Houpis, "Linear control system analysis anddesign (conventional and modern)", McGrawHill,1995.
- 3. R. T. Stefani and G. H. Hostettler, "Design of feedback Control Systems", Saunders CollegePub,1994.

OPTIM	IIZATION TECHNIQUES Open Elective	S	
Subject Code	18XXEEOM0XB	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits -3		•

This course will enable student to:

- 1. Explain the objective and constraint functions in terms of design variables, and then state the optimization problem.
- 2. Solve single variable and multi variable optimization problems with and without constraints.
- 3. Explain linear programming technique to an optimization problem, slack and surplus variables, by using Simplex method.
- 4. Explain nonlinear programming techniques, unconstrained or constrained, and define exterior and interior penalty functions for optimization problems.
- 5. Discuss evolutionary programming techniques.

Unit 1: Introduction	Hours
Statement of an Optimization problem, design vector, design constraints, constraint surface, objective function, objective function surfaces, classification of Optimization problems.	09
Unit 2: Classical Optimization Techniques Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum, multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers, multivariableOptimizationwithinequalityconstraints, Kuhn, Tuckerconditions.	10
Unit 3: Linear Programming Standard form of a linear programming problem, geometry of linear programming problems, definitions and theorems, solution of a system of linear simultaneous equations, pivotal reduction of a general system of equations, motivation to the simplex method, simplex algorithm, Duality in Linear Programming, Dual Simplex method.	
Unit 4: Nonlinear Programming	
Unconstrained cases, One, dimensional minimization methods: Classification, Fibonacci method and Quadratic interpolation method, Univariate method, Powell's method and steepest descent method. Constrained cases, Characteristics of a constrained problem, Classification, Basic approach of Penalty Function method; Basic approaches of Interior and Exterior penalty function methods. Introduction to convex Programming Problem.	10

Unit 5: Introduction to Evolutionary Methods	
Evolutionary programming methods, Introduction to Genetic Algorithms (GA)-	
Control parameters, Number of generation, population size, selection, reproduction,	
crossover and mutation, Operator selection criteria , Simple mapping of objective	10
function to fitness function, constraints, Genetic algorithm steps,	
Stopping criteria –Simple examples.	

Course outcomes:

On completion of the course student will be able to:

- 1. State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem.
- 2. Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution.
- 3. Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
- 4. Apply gradient and non-gradient methods to nonlinear optimization problems.
- 5. Apply interior or exterior penalty functions for the constraints to derive the optimal solutions.
- 6. Able to apply Genetic algorithms for simple electrical problems.

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S.Rao, NewAge International (P) Limited, 3rd edition,1998.
- 2. Soft Computing with Matlab Programming by N.P.Padhy&S.P.Simson,Oxford University Press –2015

- 1. "Optimization methods in operations Research and Systems Analysis" by K.V.Mitaland C.Mohan, New Age International (P) Limited, Publishers, 3rd edition, 1996.
- 2. Genetic Algorithms in search, optimization, and Machine Learning by DaviE.Goldberg, ISBN:978-81-7758-829-3, Pearsonby Dorling Kindersley (India) PvtLtd.
- 3. "Operations Research: An Introduction" by H.A. Taha, PHI Pvt. Ltd., 6thedition.
- 4. Linear Programming by G. Hadley.

ELECTRICAL ENERGY CONSERVATION AND AUDITING			
(Open Elective)			
Subject Code	18XXEEOM0XC	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits-03			

This course enable student to:

- 1. Explain energy efficiency, scope, conservation and technologies.
- 2. Discuss energy efficient lighting systems.
- 3. Calculate power factor of systems and propose suitable compensation techniques.
- 4. Explain the working of energy instruments.
- 5. Discuss energy conservation in HVAC systems.
- 6. Calculate life cycle costing analysis and return on investment on energy efficient technologies.

Unit 1: Basic Principles of Energy Audit and International Acts on Energy	Hours
Energy audit – Definitions – Concept – Types of audit – Energy index – Cost index – Pie charts –Sankey diagrams – Load profiles – Energy conservation schemes and energy saving potential – Numerical problems – Indian energy scenario and consumption, energy needs of growing economy, energy intensity, long term energy scenario, energy pricing, energy security, energy conservation and its importance, National action plan on climate change Energy and environment, air pollution, climate change United Nations Framework Convention on Climate Change (UNFCC), sustainable development, Kyoto Protocol, Conference of Parties	10
Unit 2: Energy conservation opportunities in lighting Modification of existing systems – Replacement of existing systems – Priorities Definition of terms and units – Luminous efficiency –Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings (luminaries) – Flood lighting – White light LED and conducting Polymers –Energy conservation measures, lighting energy audit, case studies.	10
Unit 3: Power Factor and energy instruments Power factor – Methods of improvement – Location of capacitors – Power factor with nonlinear loads – Effect of harmonics on Power factor – Numerical problems Energy Instruments – Watt–hour meter – Data loggers –Thermocouples–Pyrometers – Lux meters – Tong testers – Power analyzer.	09
Unit 4: HVAC Systems and ECBC Heating, ventilation, air conditioning (HVAC), fenestrations Energy Conservation Building Codes (ECBC), building envelope, insulation, lighting, water pumping, inverter and energy storage/captive generation, elevators and escalators, star labeling for existing buildings, Energy Service Companies based case studies.	09

Unit 5: Energy Efficient Motors and Financial Aspects of Conservation Technologies

Energy Efficient motors Design, construction, Gorilla fan case study(Additional practical topic) Understanding energy cost, Economics Analysis – Depreciation Methods – Time value of money – Rate of return – Present worth method – Replacement analysis – Life cycle costing analysis — Economics of energy efficient motors and systems. Need of investment, appraisal and criteria, Calculation of simple payback period–Return on investment – Net present value – Internal rate of return – numerical examples Applications of life cycle costing analysis – Return on investment –Numerical examples.

10

Course outcomes:

On completion of the course student will be able to:

- 1. Explain energy efficiency, conservation and various technologies
- 2. Design energy efficient lighting system
- 3. Calculate power factor of systems and propose suitable compensation techniques
- 4. Explain the working of Energy Instruments.
- 5. Explain energy conservation techniques in HVAC Systems
- 6. Calculate life cycle costing analysis and return on investment on energy efficiency technologies.

Text Books:

- 1. Hand Book of Energy Audit by Sonal Desai- Tata McGrawhill
- 2. Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc. Ltd-2nd edition, 1995

- 1. Energy management by W.R. Murphy & G. Mckay Butter worth, Elsevier publications.2012
- 2. Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. NewDelhi.
- 3. Energy management by Paul o' Callaghan, Mc–Graw Hill Book company–1st edition, 1998.
- 4. Energy management hand book by W.C.Turner, John wileyandsons.
- 5. Energy management and conservation –k v Sharma and pvenkataseshaiah-I K International Publishing Housepvt.ltd,2011.
- 6. http://www.energymanagertraining.com/download/Gazette_of_IndiaPartIISecI-_37_25-08-2010.pdf

ELECTRICAL AND HYBRID VEHICLES (Open Elective)			
Subject Code	18XXEEOM0XD	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits-03			

This course will enable student to:

- 1. Explain working of hybrid and electric vehicles, its performance and characteristics.
- 2. Discuss hybrid vehicle configuration and its components.
- 3. Explain electric vehicle drive systems.
- 4. Discuss the properties of energy storage systems.
- 5. Compare different Energy management strategies

Unit 1: Introduction	Hours
Conventional Vehicles: Basics of vehicle performance, vehicle power source	
characterization, transmission characteristics, and mathematical models to	
describe vehicle performance.	10
Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles,	
social and environmental importance of hybrid and electric vehicles.	
Unit 2: Hybrid Electric Drive Trains	
Architecture of Hybrid Electric Vehicles (HEV), analysis of drive trains, energy	
use in conventional vehicles, energy saving potential of hybrid drive trains,	
various HEV configurations and their operation model.	10
Power flow in HEV: Power flow control in series, parallel, series-parallel hybrid	
system. Torque and Speed coupling.	
Unit 3: Electric Drive Trains	
Architecture of electric drive train, electric vehicle configuration, electric drive	
trains, EV power source configurations.	09
Single and Multi-Motor drives, In wheel drives, requirements of different electric	0)
motors used in EVs, Power-Torque-Speed characteristics, electric propulsion	
systems.	
Unit 4: Energy Storage	
Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles,	
Battery based energy storage and its analysis, Fuel Cell based energy storage and	
its analysis, Super Capacitor based energy storage and its analysis, Flywheel	09
based energy storage and its analysis, Hybridization of different energy storage	
devices. Unit 5: Energy Management Strategies	
Unit 5: Energy Management Strategies	
Introduction to energy management strategies used in hybrid and electric vehicles,	
classification, comparison of different energy management strategies,	
implementation issues of energy management strategies. Functions of control	10
system in HEVs & EVs, Elementary control theory, Electronic control unit,	
control area network, control variables, classifications of Hybrid electronic	
control unit, fuzzy logic based control system	

On completion of the course student will be able to:

- 1. Illustrate the working of hybrid and electric vehicles, its performance and characteristics.
- 2. Analyze hybrid vehicle configuration and its components.
- 3. Discuss electric vehicle drive systems.
- 4. Illustrate electric propulsion systems.
- 5. Infer the properties of energy storage systems.
- 6. Distinguish different energy management strategies.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14marks.
- 2. Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

Reference Books:

- 1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, HybridElectric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

INTELLIGENT C	CONTROL & ITS APPLI	CATIONS	
	(Open Elective)		
Subject Code	18XXEEOM0XE	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Credits – 03

Course Objectives:

This course will enable student to:

- 1. Explain the basic intelligent controller concepts
- 2. Understand concepts of feed forward neural networks and learning and understanding of feedback neural networks.
- 3. Discuss the concept of genetic algorithm.
- 4. Understand the basic knowledge of fuzzy logic control.
- 5. Apply the knowledge of fuzzy logic control, genetic algorithm and neural network to the real problems.

Unit 1: Introduction to Intelligent Control	Hours
Introduction and motivation. Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI	09
approach. Knowledge representation, Expert systems.	09
Unit 2: Artificial Neural Networks	
Concept of Artificial Neural Networks, its basic mathematical model, McCulloch- Pitts neuron model, simple perception, Adeline and Madeline, Feedforward Multilayer Perception. Learning and Training the neural network. Introduction, derivation, algorithm, flowchart, limitation-Error Back propagation, Hopfield, Radial bases function	10
Unit 3: Genetic Algorithm	
Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of	
free parameters. Solution of typical control problems using genetic algorithm.	10
Concept on some other search techniques like tab search and ant-colony search	
techniques for solving optimization problems	
Unit 4: Fuzzy Logic System	
Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Fuzzy logic control for nonlinear time- delay system. Implementation of fuzzy logic controller.	10
Unit 5: Applications	
Aerospace and data mining applications of Genetic Algorithm - Neural Network and Fuzzy Logic Control applications in Smart grid, Electric drives and Distributed generation.	09

On completion of the course student will be able to:

- 1. Infer representations applied to artificial intelligence techniques
- 2. Illustrate the use of artificial neuron in perceptron models and back propagation algorithm to multilayer feed forward networks
- 3. Develop rule based and decision making with the use of classical and fuzzylogic systems
- 4. Analyze the concept of geneticalgorithm.
- 5. Analyze the fuzzy logic controller using MATLAB.
- 6. Discover various applications of neural and fuzzy logic systems inelectrical Engineering

Text Books:

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J. Ross, Fuzzy logic with Fuzzy Applications, McGraw Hill Inc,1997.
- 3. David E Goldberg, Genetic Algorithms. Wesley PublishingCompany,1989
- 4. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003.
- 5. Neural Network, Fuzzy Logic and Genetic Algorithm : Synthesis and Applications.

Rajasekaran and G. A. VijayalakshmiPai (Prentice Hall India, 2010)

Reference Books:

- 1. M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M. Ham and IvicaKostanic, Principles of Neuro computing for science and Engineering, McGraw Hill,2001.
- 3. N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, Mc. Graw Hill, Inc.1996.
- 4. Yung C. Shin and ChengyingXu, Intelligent System, Modeling, Optimization and Control, CRC Press, 2009.
- 5. N. K. Sinha and Madan M Gupta, Soft computing & Intelligent Systems, Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. WitoldPedrycz, Fuzzy Control and Fuzzy Systems, Overseas Press, Indian Edition, 2008.

ELECT	RICAL MATERIALS		
(Open Elective)		
Subject Code	18XXEEOM0XF	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	45	Exam Hours	03
	Credits = 03		

This course will enable student to:

- 1. Describe the formation and properties of conducting material.
- 2. Explain the formation and properties of Semiconductor Materials.
- 3. Infer the formation and properties of Dielectric Materials.
- 4. Explain the formation and properties of Magnetic Materials.
- 5. Describe the formation and properties of Special Purpose Materials.

Unit 1: Conducting Materials	Hours
Review of metallic conduction on the basis of free electron theory. Fermi-Dirac distribution – variation of conductivity with temperature and composition, materials for electric resistors- general electric properties; material for brushes of electrical machines, lamp filaments, fuses and solder.	10
Unit 2: Semiconductor Materials	
Mechanism of conduction in semiconductors, density of carriers in intrinsic semiconductors, the energy gap, types of semiconductors. Hall effect, compound semiconductors, basic ideas of amorphous and organic semiconductors.	09
Unit 3: Dielectric Materials	
Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyro electric materials.	10
Unit 4: Magnetic Materials	
Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and hysteresis	10
Unit 5: Materials for Electrical Applications & Special Purpose Materials	
Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation. Refractory Materials, Structural Materials, Radioactive Materials, Galvanization and	10

Impregnation of materials, Processing of electronic materials, Insulating varnishes and coolants, Properties and applications of mineral oils, Testing of Transformer oil as per ISI

Course outcomes:

On completion of the course student will be able to:

- 1. Understand various types of conducting, their properties in various conditions.
- 2. Evaluate semiconductor materials and technologies
- 3. Understand various types of dielectric materials, their properties in various conditions.
- 4. Evaluate magnetic materials and their behavior.
- 5. Acquire Knowledge on Materials used in electrical engineering and applications.
- 6. Able to test Transformer oil as per standard.

Text Books:

- 1. R K Rajput", " A course in Electrical Engineering Materials", Laxmi Publications, 2009
- 2. "T K Basak", " A course in Electrical Engineering Materials", New Age Science Publications 2009

Reference Books:

- 1. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education, 2004.
- 2. "Adrianus J. Dekker", Electrical Engineering Materials, PHI Publication, 2006.
- 3. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", DhanpatRai& Sons, 2011.

·	ELECTRICAL SYSTEM Open Elective)	IS	
Subject Code	18XXEEOM0XG	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
	Credits – 03	•	

This course will enable student to:

- 1. Explain Tariff structure and protection components.
- 2. Compare various types wiring systems and IE rules.
- 3. Describe the Illumination technology.
- 4. Compare various types of cables.
- 5. Discuss on PLC applications.
- 6. Explain the implementation of SCADA for various applications.

Unit 1: Electrical System Components	Hours
LT system wiring components, selection of cables, wires, switches, distribution	
box, metering system, Tariff structure, protection components- Fuse, MCB,	
MCCB, ELCB, inverse current characteristics, symbols, single line diagram	
(SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock	10
and	
Electrical safety practices	
Unit 2: Residential and Commercial Electrical Systems	
Types of residential and commercial wiring systems, general rules and	
guidelines for installation, load calculation and sizing of wire, rating of main	
switch, distribution board and protection devices, earthing system calculations,	10
requirements of commercial installation, deciding lighting scheme and number	
of lamps, earthing of commercial installation, selection and sizing of	
components.	
Unit 3: Illumination Systems	
Understanding various terms regarding light, lumen, intensity, candle power,	
lamp efficiency, specific consumption, glare, space to height ratio, waste light	40
factor, depreciation factor, various illumination schemes, Incandescent lamps	10
and modern luminaries like CFL, LED and their operation, energy saving in	
illumination systems, design of a lighting scheme for a residential and	
commercial premises, flood lighting.	
Unit 4: Industrial Electrical Systems	
HT connection, industrial substation, Transformer selection, Industrial loads,	
motors, starting of motors, SLD, Cable and Switchgear selection, Lightning	
Protection, Earthing design, Power factor correction – kVAR calculations, type	10
	10
of compensation, Introduction to PCC, MCC panels. Specifications of LT	
Breakers, MCB and other LT panel components. DG Systems, UPS System,	
Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.	
Battery Banks, Selection of UPS and Battery Banks.	

Unit 5: Industrial Electrical System Automation

Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.

Course outcomes:

On completion of the course student will be able to:

- 1. Illustrate Tariff structure and protection components.
- 2. Discuss various types wiring systems and IE rules.
- 3. Explain the Illumination technology.
- 4. Distinguish various types of cables.
- 5. Discover PLC applications.
- 6. Choose various applications to implement SCADA.

Text Books:

- 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khannapublishers, 2008.
- 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", DhanpatRai and Co., 1997.

Reference Books:

- 1. Web site for IS Standards.
- 2. H. Joshi, "Residential Commercial and Industrial Systems", McGrawHill Education, 2008.

ADVANCED CONTROL SYSTEMS			
	(Open Elective)		
Subject Code	18XXEEOM0XH	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Credits -03			

The objectives of this course is to acquire knowledge on

- 1. formulation of different models using state space analysis
- 2. analysis of state feedback control through pole placement technique.
- 3. analysis of a nonlinear system using Lypanov's method of stability
- 4. formulation of Euler Lagrange equation to optimize typical functional and solutions.
- 5. optimal controller design using LQG framework

Unit 1: State Space Analysis	Hours
State Space Representation –Solution of state equation –State transition matrix, – Canonical forms –Controllable canonical form –Observable canonical form, Jordan Canonical Form.	09
Unit 2: Controllability, Observability and Design of Pole Placement Tests for controllability and observability for continuous time systems –Time varying case –Minimum energy control –Time invariant case –Principle of duality –Controllability and observability form Jordan canonical form and other canonical forms –Effect of state feedback on controllability and observability – Design of state feedback control through pole placement.	10
Unit 3: Describing Function and Stability Analysis Introduction to nonlinear systems, Types of nonlinearities, describing functions, Introduction to phase–plane analysis. Stability in the sense of Lyapunov – Lyapunov's stability and Lypanov's instability theorems –Direct method of Lyapunov for the linear and nonlinear continuous time autonomous systems.	10
Unit 4: Calculus of variations Minimization of functional of single function –Constrained minimization – Minimum principle –Control variable inequality constraints –Control and state variable inequality constraints –Euler lagrangine equation	09
Unit 5: Optimal Control Design	

Linear Quadratic Optimal Regulator (LQR) problem formulation –Optimal regulator Design by parameter adjustment (Lyapunov method) –Optimal regulator Design by Continuous Time Algebraic Riccatti equation (CARE) - Optimal controller Design using LQG framework.

10

Course outcomes:

- 1. Able to design the state space model of control system and formulate different state models
- 2. Able to design of control system using the pole placement technique
- 3. Able to analyse of nonlinear system using the describing function technique and phase plane analysis.
- 4. Able to analysis the stability analysis using lypnov method.
- 5. Able to minimize the function using calculus of variation studied.
- 6. Able to design optimal controller using LQG framework.

Text Books:

- 1. Modern Control Engineering by K. Ogata, Prentice Hall of India, 3rd edition, 1998.
- 2. Automatic Control Systems by B.C. Kuo, Prentice Hall Publication

Reference Books:

- 1. Modern Control System Theory by M. Gopal, New Age International Publishers, 2nd edition, 1996.
- 2. Control Systems Engineering by I.J. Nagarath and M.Gopal, New Age International (P) Ltd.
- 3. Digital Control and State Variable Methods by M. Gopal, Tata McGraw–Hill Companies, 1997

OPEN ELECTIVES OFFERED BY IT TO OTHER DEPARTMENTS

S. No.	Subject Code	Subject
1.	18XXITOXXXA	Block Chain
2.	18XXITOXXXB	Data Structures
3.	18XXITOXXXC	Designing Database Management Systems
4.	18XXITOXXXD	Operating Systems
5.	18XXITOXXXE	R Programming
6.	18XXITOXXXF	Python Programming
7.	18XXITOXXXG	Java Programming
8.	18XXITOXXXH	Web Technologies
9.	18XXITOXXXI	Artificial Intelligence
10.	18XXITOXXXJ	Computer Graphics

	BLOCK CHAIN		
Subject Code	18XXITOXXXA	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Introduction			Hours
Overview of Block chain, public le chain, transactions, distributed ounderstanding crypto currency to be	consensus, public vs private lock chain, permissioned model o	block chain, f block chain,	08
overview of security aspects of bloc of a hash function, hash pointer a cryptography, a basic crypto currence	and Merkle tree, digital signatur cy.		00
Unit -2: Understanding block chair Creation of coins, payments and network, transaction in bitcoin network, distributed consensus in open Proof of Work (PoW)- Basic Introdu PoW and the monopoly problem, Protime, the life of a bitcoin miner, Min	double spending, bitcoin scripts ork, block mining, block propagate environments, consensus in a bit uction, hashcash PoW, Bitcoin Poroof of Stake, Proof of burn and pr	cion and block coin network, W, Attacks on	10
Unit – 3:Permissioned Block Chai	n		
Permissioned model and use cases execute contracts, state machine r permissioned block chain, Distribut RAFT consensus, Byzantine gener Lamport-Shostak-Pease BFT algorit	eplication, overview of consensuated consensus in closed enviroral problem, Byzantine fault tole	is models for nment, paxos, rance system,	10
Unit – 4:Enterprise application of	<u> </u>	1	
Cross border payments, Know Y block chain, Block chain enabled financing, identity on block chain.			10
Unit - 5:Block chain application d	levelopment		
Hyper ledger fabric- architecture, i	identities and policies, membershation, writing smart contract using		12
fabric, writing smart contract using	Ethereum, overview of Ripple and		12
	Ethereum, overview of Ripple and		12
fabric, writing smart contract using Text(T) / Reference(R) Books:	Ethereum, overview of Ripple and new economy, Melanie Swan, O'R	Corda.	12
Fabric, writing smart contract using a rest (T) / Reference(R) Books: T1 Block Chain: Blueprint for a rest of the Block Chain and Leveraging Block Chain Program of the Block Chain Pr	new economy, Melanie Swan, O'R n for Beginners- Guide to Block C ramming, Josh Thompsons	Corda.	
fabric, writing smart contract using Text(T) / Reference(R) Books: T1 Block Chain: Blueprint for a r T2 Block Chain: The Block Chain Leveraging Block Chain Prog R1 Block Chain Basics, Daniel D	new economy, Melanie Swan, O'R n for Beginners- Guide to Block C ramming, Josh Thompsons rescher, Apress; 1 st edition, 2017	eilly, 2015. hain Technolog	y and
fabric, writing smart contract using Text(T) / Reference(R) Books: T1 Block Chain: Blueprint for a r T2 Block Chain: The Block Chain Leveraging Block Chain Prog R1 Block Chain Basics, Daniel D	new economy, Melanie Swan, O'R n for Beginners- Guide to Block C ramming, Josh Thompsons	eilly, 2015. hain Technolog	y and
Fabric, writing smart contract using a rext(T) / Reference(R) Books: T1 Block Chain: Blueprint for a reconstruct Block Chain: The Block Chain Leveraging Block Chain Program Block Chain Basics, Daniel Delhi.	new economy, Melanie Swan, O'R n for Beginners- Guide to Block C ramming, Josh Thompsons rescher, Apress; 1 st edition, 2017 encies, Anshul Kaushik, Khanna P	eilly, 2015. hain Technology	y and
Text(T) / Reference(R) Books: T1 Block Chain: Blueprint for a r T2 Block Chain: The Block Chair Leveraging Block Chain Prog R1 Block Chain Basics, Daniel D R2 Block Chain and Crypto Curre Delhi. R3 Mastering Block Chain: District	new economy, Melanie Swan, O'R in for Beginners- Guide to Block C ramming, Josh Thompsons rescher, Apress; 1 st edition, 2017 encies, Anshul Kaushik, Khanna P ibuted Ledger Technology, Decembashir, Packt Publishing.	eilly, 2015. hain Technology	y and

Cour	Course Outcomes: On completion of this course, students can		
CO1	Understand block chain technology.		
CO2	Develop block chain-based solutions		
CO3	Write smart contract using Hyperledger Fabric and Ethereum frameworks.		
CO4	Build and deploy block chain application for on premise and cloud-based architecture.		
CO5	Integrate ideas from various domains and implement them.		

]	DATA STRUCTURES		
Subj	ect Code	18XXITOXXXB	IA Marks	30
Num	ber of Lecture Hours/Week	3	Exam Marks	70
Tota	l Number of Lecture Hours	50	Exam Hours	03
		Credits – 03		
Unit	-1: INTRODUCTION TO DAT	TA STRUCTURE		Hours
Meas analy Array	surement (Time and space analysissis), Types of Data Structures- L	and non-primitive, Performance Asis of algorithms-Average, best- an inear & Non-Linear Data Structure Applications of arrays, sparse	nd worst-case res.	10
Unit	-2 :Stack and Queue			
Polis	h Expression, Reverse Polish Exp ne: Representation Of Queue, Op	s, Operations On Stacks, Applic pression and their Compilation, R perations On Queue, Circular Que	ecursion.	10
Unit	- 3: LINKED LIST		,	
		oly Linked list, Circular linked list ementation of Queue, Application		08
Unit	- 4:NONLINEAR DATA STR	UCTURE	I	
(Inor		sentation of binary tree, Binary treesearch trees, Conversion of Gener		10
Unit	- 5: Sorting and Searching:			
Sorti	2	ort, Quick Sort, Merge Sort Sea	rching –Sequential	12
Text	(T) / Reference(R) Books:			
		Reema Thareja - OXFORD Hi	gher Publication	
T2	Data Structures using C & C-International	++ -By Ten Baum Publisher –	Prenctice-Hall	
R1	Fundamentals of Computer A	Algorithms by Horowitz, Sahni	,Galgotia Pub. 200)1 ed
R2	Fundamentals of Data Structi	ures in C++-By Sartaj Sahani.		
R3	Data Structures: A Pseudo-co Publisher Thomson Learning	ode approach with C -By Gilbe	rg & Forouzan	
W1	https://www.coursera.org/spe	ecializations/data-structures-alg	gorithms	
W2	https://online-learning.harvar	d.edu/course/data-structures-ar	nd-algorithms	
Cou	rse Outcomes: On completion	of this course, students can		
CO1	Analyze algorithms' time and s	space complexity and justify the c	correctness.	
CO2				
CO3	Implement Linked List ADT.			

CO4 Implement Binary Tree ADT and traversal algorithms.
CO5 Implement Searching and sorting algorithms.

DESIGNING DATABASE MANAGEMENT SYSTEMS			
Subject Code	18XXITOXXXC	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Database system architect	ture		Hours
Introduction to Databases: Characte		_	
of using the DBMS Approach, A Br			
of Database Languages and Archit			10
Three-Schema Architecture and Dat	a Independence, Database Users	, Architecture	
for DBMS.			
Unit -2 : E-R Models	dal Juan dant'an ta Databasa Da	: D-4-1	
The E-R Models, The Relational Mo			
Design and ER Diagrams, Entities Relationship Sets, Conceptual Designation	_	-	10
1			10
Integrity Constraints Over Relations, Key Constraints, Foreign Key Constraints, General Constraints.			
Unit - 3: Relational Algebra			
Relational Algebra, Selection and Projection, Set Operation, Renaming, Joins,			
Division, More Examples of Queries, Relational Calculus: Tuple Relational		_	
Calculus, Domain Relational Calculus.		10	
The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries,		10	
Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers			
and Active Database.			
Unit - 4: Normalization			
Purpose of Normalization or schema	<u>-</u>	-	
normal forms based on functional	± • • • • • • • • • • • • • • • • • • •		08
surrogate key, Boyce-Codd normal		d dependency	00
preserving decomposition, Fourth normal form(4NF).			
Unit - 5: Transaction Management			
Transaction, properties of transaction			
with SQL using commit rollback	•		
updates, Uncommitted data, inconsi		-	12
control with locking methods, lock ensuring serializability, deadlocks,	• • • • • • • • • • • • • • • • • • • •	_	
Wait/Die and Wound/Wait Schemes	•	-	
vi and Die and vi ound, vi an Schemes	, Database Recovery management	•	

Text	(T) / Reference(R) Books:
T1	roduction to Database Systems, CJDate ,Pearson.
T2	Database Management Systems,3 rd Edition , Raghurama Krishnan, Johannes Gehrke,
	TATA McGrawHill.
T3	tabase Systems-The Complete Book, H GMolina, J DUllman, J WidomPearson.
T4	tabase Management Systems,6/e Ramez Elmasri, Shamkant B. Navathe, PEA
R1	tabaseSystemsdesign,Implementation,andManagement,7 th Edition,PeterRob&CarlosCor
	onel
R2	tabase System Concepts, 5th edition, Silberschatz, Korth, TMH
R3	The Database Book Principles & Practice Using Oracle/MySQL, Narain Gehani,

	University Press.
W1	https://onlinecourses.nptel.ac.in/noc18_cs15/preview
W2	https://www.coursera.org/courses?query=database

Cours	Course Outcomes: On completion of this course, students can		
CO1	Recognize the basic elements of a relational database management system.		
CO2	Design entity relationship and convert entity relationship diagrams into RDBMS.		
CO3	Design relational algebra and calculus to create, maintain, and manipulate a relational database using SQL.		
CO4	Implement normalization techniques for logical schema models.		
CO5	Estimate concurrent issues and problems through locking mechanism.		

OPERATING SYSTEMS			
Subject Code	18XXITOXXXD	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Operating Systems Overv	riew		Hours
Computer system organization, C	perating system structure, Proce	ss, memory,	
storage management, Protection a	and security, Distributed systems,	, Computing	10
Environments, Open-source operation	ng systems, OS services, User oper	rating-system	10
interface.			
Unit -2 :System Calls & IPC			
System calls, Types, System progra	ams, OS structure, OS generation,	System Boot	
Process concept, scheduling (Ope	rations on processes, Cooperatin	g processes,	10
Inter-process communication), Mult	i-threading models		
Unit - 3: Process Management			
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling,		scheduling,	
Multiple processor scheduling Operating system, Algorithm			
Evaluation, The critical section problem, Peterson's solution, Synchronization			10
hardware, Semaphores, Classic problems of synchronization, Critical regions,			
Monitors.			
Unit - 4:Memory Management & Dead lock			
System model, Deadlock characteristics	terization, Methods for handling	g deadlocks,	
Deadlock Prevention, Deadlock A	voidance, Deadlock detection, Re	ecovery from	
deadlock.		•	
Storage Management: Swapping	, Contiguous memory allocati	on, Paging,	10
Segmentation Virtual Memory Bac			
replacement and various Page re			
Thrashing.			
Unit - 5:I/O Systems			
File concept, Access methods,	Directory structure, Filesystem	n mounting,	
_	ntation, Allocation methods,	0	10
management, Disk scheduling, I		management,	10
Protection.			

Text(T) / Reference(R) Books:
T1	Operating System Concepts Essentials, Abraham Silberschatz, Peter B. Galvin, Greg
	Gagne, John Wiley & Sons Inc., 2010.
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter Baer Galvin and
	Greg Gagne, John Wiley and Sons Inc., 2012
T3	Operating Systems, Second Edition, S Halder, Alex A Aravind, Pearson Education,
	2016
T4	Operating Systems – Internals and Design Principles, 7th Edition, William Stallings,
	Prentice Hall, 2011
R1	Modern Operating Systems, Second Edition, Andrew S. Tanenbaum, Addison Wesley,
	2001.
R2	Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata McGraw
	Hill Education, 1996.
R3	Operating Systems: A Concept-based Approach, Second Edition, D M Dhamdhere,
	Tata McGraw-Hill Education, 2007

R4	Operating Systems: Internals and Design Principles, Seventh Edition, William
	Stallings, Prentice Hall, 2011
W1	https://www.coursera.org/courses?query=operating%20system
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview

Cours	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate the evolution of Computer System organization and Operating system		
	services.		
CO2	Design solutions for process synchronization problems by using System calls and		
	Inter process communication.		
CO3	Identify the functionality involved in process management concepts like scheduling		
	and synchronization.		
CO4	Design models for handling deadlock and perform memory management.		
CO5	Analyze services of I/O subsystems and mechanisms of security & protection.		

R PROGRAMMING			
Subject Code	18XXITOXXXE	IA Marks	30
Number of Lecture Hours/Week	3	Exam Mark	s 70
Total Number of Lecture Hours 50 Exam Hours		03	
	Credits – 03		
Unit -1: Introduction			Hours
How to run R, R Sessions and F	unctions, Basic Math, Variables,	Data Types,	
Vectors, Conclusion, Advanced D	ata Structures, Data Frames, List	ts, Matrices,	08
Arrays, Classes.			
Unit -2:	1.0.	N T .	
R Programming Structures, Control	1 1 0		
Sets,- If-Else Arithmetic and Bool Argument, Return Values, Decidin	=		10
Complex Objects, Functions are		_	10
Quicksort Implementation-Extended	•		
Unit – 3: Math and Simulation in R	r		
Doing Math and Simulation in R,	Math Function, Extended Example	Calculating	
Probability- Cumulative Sums ar			
Functions Fir Statistical Distribution	n, Sorting, Linear Algebra Operatio	n on Vectors	10
and Matrices, Extended Example		-	10
Finding Stationary Distribution of		put /out put,	
Accessing the Keyboard and Monito	or, Reading and writer Files		
Unit – 4:Graphics		· · · ·	
Creating Graphs, The Workhorse	1 "		
Customizing Graphs, Saving Grap Distribution- Binomial Distribution			10
Basic Statistics, Correlation and Co		Distribution,	
Unit – 5:Linear Models	variance, 1 1ests, 1110 v11.		
Simple Linear Regression, -Mult	iple Regression Generalized Lin	ear Models.	
Logistic Regression, - Poisson R	1 0	· ·	12
Survival Analysis, Nonlinear Model			
Text(T) / Reference(R) Books:			
, ,	forman Matloff, Cengage Learning		
T2 R for Everyone, Lander, Pears			
R1 R Cookbook, PaulTeetor, Ore			
R2 R in Action, Rob Kabacoff, M			
W1 https://www.edx.org/learn/r-p			
W2 https://www.coursera.org/lear			
Course Outcomes: On completion of this course, students can			
CO1 Identify the data types in R Programming Language.			
	inctions with recursion and without		
	and probabilistic functions to rev	iew, manipul	ate and
summarize data-sets in R	ol tooto voina D. Creata 1 - 4'.	aligations	
	al tests using R Create and edit visu		-41.41.1
_	testable hypotheses and identify	appropriate st	tatistical
tests			

PYTHON PROGRAMMING				
Subj	ect Code	18XXITOXXXF	IA Marks	30
	ber of Lecture Hours/Week	3	Exam Marks	70
Tota	l Number of Lecture Hours	50	Exam Hours	03
		Credits – 03	•	•
Unit -1: Introduction				Hours
History of Python, Need of Python Programming, Applications Basics of Python				
_		Shell), Running Python Script	s, Variables,	08
	gnment, Keywords, Input-Outp			
	-2: Types, Operators and Ex			
	es - Integers, Strings, Booleans;			
		l) Operators, Assignment Opera		
		Membership Operators, Identity		10
		s Control Flow- if, if-elif-else, for,		
	onaries, Sequences. Comprehe	ts - Operations, Slicing, Methods;	rupies, sets,	
	- 3: Functions	iisioiis.		
		one Dessing Arguments Vayyyor	d Argumants	
		ons, Passing Arguments, Keywor th arguments, Anonymous Funct		
	_	ues), Scope of the Variables in		
	· · · · · · · · · · · · · · · · · · ·	les: Creating modules, import sta		10
		ython packages, Introduction to F	· ·	
_	ages via PIP, Using Python Pac		ii , iiistaiiiig	
	- 4: Object Oriented Program			
Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods,				
Data hiding, Error and Exceptions: Difference between an error and Exception, Handling			10	
Exception, try except block, Raising Exceptions, User Defined Exceptions				
Unit	- 5: Brief Tour of the Standa	rd Library		
		ing Pattern Matching, Mathema		
Acce	ess, Dates and Times, Data Co	mpression, Multithreading, GUI I	Programming,	12
Turtl	e Graphics			
Text(T) / Reference(R) Books:				
T1	7 7	ern Approach, Vamsi Kurama, Pea	arson	
T2	Learning Python, Mark Lutz,		15011	
	Think Python, Allen Downey.			
R1	3 .			
	R2 Core Python Programming, W.Chun, Pearson			
R3 Introduction to Python, Kenneth A. Lambert, Cengage				
W1	https://www.coursera.org/cou			
W2	https://www.edx.org/learn/pyt	hon		
Cou	rse Outcomes: On completion	of this course, students can		
CO1 Describe the basic elements of Python Programming Language				
CO2 Apply various operators and Control statements to solve the real world problems				
CO3 Implement modularity and reusability by using functions				
CO4 Employ Various OOPS Concepts for real world applications				
CO5				
		r -rr		

JA	VA PROGRAMMING		
Subject Code	18XXITOXXXG	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Introduction to OOP			Hours
Procedural programming language		-	
OOP, applications of OOP, history	0 0		
Variables, primitive data types,	-	-	08
precedence rules and associativity,	primitive type conversion and cas	ting, flow of	
control.			
Unit -2 :Classes and objects			
Classes and objects, class declaration			40
constructor overloading, garbage			10
examples, this keyword, arrays, command line arguments, nested classes.			
Unit – 3:Inheritance			
Inheritance, types of inheritance, s	± •	_	
abstract class. Interfaces, creating			10
CLASSPATH and java.lang package. Exception handling, importance of try, catch,			
throw, throws and finally block, user defined exceptions, Assertions			
Unit – 4:Multithreading			
Introduction, thread life cycle, of	<u>-</u>		
synchronization, communication b	_	om files and	10
writing data to files, random access file.			
Unit – 5:Applet			
Applet class, Applet structure, App			
handling: event delegation model			
classes, inner classes. AWT: intro			12
Label, Checkbox, Radio Buttons,	List Boxes, Choice Boxes, Con	tainer class,	
Layouts, Menu and Scrollbar.			

Text	Text(T) / Reference(R) Books:		
T1	The complete Reference Java, 8th edition, Herbert Schildt, TMH		
T2	Programming in JAVA, Sachin Malhotra, SaurabhChoudary, Oxford		
R1	Introduction to java programming, 7th edition by Y Daniel Liang, Pearson		
W1	https://www.coursera.org/courses?query=java		
W2	https://www.udemy.com/java-tutorial/		

Course Outcomes: On completion of this course, students can		
CO1	Describe OOP principles, and basic structure of a Java program	
CO2	Implement reference data type like class and arrays	
CO3	Demonstrate inheritance, user defined packages and exception handling.	
CO4	Design the applications with Interprocess Communication using multithreading.	
CO5	Demonstrate the applications using GUI elements and event handling.	

W	EB TECHNOLOGIES		
Subject Code	18XXITOXXXH	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03	•	•
Unit-1: HTML			Hours
HTML:			
Basic Syntax, Standard HTML Docum	nent Structure, Basic Text Markup,Im	nages,	
Hypertext, Links, Lists, Tables, Forms,	HTML5		10
CSS:			10
Levels of Style Sheets, Style Spe	cification Formats, Selector Form	ns, The Box	
Model, Conflict Resolution			
Unit -2: Java Script			
Javascript:			
Introduction, Where to, Variables,	Operators, Screen Output and K	eyboard Input,	10
Control Statements, Objects, Events, Arrays, Functions, Object Creation and Modification,			
Constructors, Pattern Matching using Regular Expressions			
Unit -3 Bootstrap			
Gird basics, Bootstrap Text/Typogra	phy, Tables, Images, Jumbotron, V	Vells, Alerts,	
Button groups, Glyphicons, Progress Bars, List Groups, Panels, Dropdowns, Tabs			10
and Pills, Navigation Bar, Forms, input sizing, Media Objects, Carousel Plugin,			10
Popover Plugin, Scrollspy Plugin.			
Unit –4: XML			
Working with XML: Document typ	e Definition, XML schemas, Doc	ument object	08
model, XSLT, DOM and SAX.			Vo
Unit -5: PHP			
PHP Programming: Introduction	to PHP, Creating PHP script, R	Running PHP	
script.			
Working with variables and constants: Using variables, Using constants, Data			
types, Operators.			
Controlling program flow: Cond	itional statements, Control statem	ents, Arrays,	
functions.			

Text	Text(T) / Reference(R) Books:		
T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013		
T2	Web Technologies, 1st Edition 7th impression, Uttam K Roy, Oxford, 2012.		
R1	Programming world wide web, Sebesta, Pearson		
R2	An Introduction to web Design and Programming, Wang, Thomson		
W1	https://www.edx.org/learn/web-development		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Design static webpages using HTML and CSS elements.		
CO2	Design interactive webpages using Java Script		
CO3	Design web responsive webpages suitable for multiple device user friendly view		
CO4	Develop a webpages by the use of XML		
CO5	Develop web applications using PHP		

ARTIFIC	IAL INTELLIGENCE			
Subject Code	18XXITOXXXI	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03		•	
Unit -1: Introduction to artificial inte	lligence		Hours	
Introduction, history, intelligent system game playing, development of AI langu		ions, tic-tac-tie	08	
Unit -2: Problem solving: state-space	search and control strategic	es		
Introduction, general problem solvin searches, heuristic search techniques, ite	_	·	10	
Unit – 3:Problem reduction, Game playing				
Problem Reduction: Introduction, Problem reduction using AO* algorithm, Towers				
of Hanoi problem, Matrix Multiplic		ng, alpha-beta	10	
pruning, two-player perfect information	<u> </u>			
Unit – 4: Logic Concepts & Knowledge Representation Techniques				
Logic Concepts: Introduction, proposition		_		
deduction system, axiomatic system, se		portional logic,	10	
resolution refutation in proportional logic, predicate logic.				
Introduction to KR techniques, conceptual dependency theory, script structure, cyc				
theory, case grammars, semantic web.				
Unit – 5: Expert systems and its appli	cations			
Introduction phases in building expert	· · · · · · · · · · · · · · · · · · ·			
systems, rule-based expert systems, blace		nance systems,	12	
application of expert systems, list of she	ells and tools.			

Text	c(T) / Reference(R) Books:
T1	Artificial Intelligence- Saroj Kaushik, CENGAGE Learning
T2	Artificial intelligence, A modern Approach, 2nded, Stuart Russel, Peter Norvig, PEA
T3	Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair, 3rded, TMH
T4	Introduction to Artificial Intelligence, Patterson, PHI
R1	Artificial intelligence, structures and Strategies for Complex problem solving, -George
	F Lugar, 5thed, PEA
R2	Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer
R3	Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier
R4	AI: A Modern Approach, Stuart Russell and Peter Norvig,
	Additional Readings: Marr, Bishop, occasionally others
W1	https://www.edx.org/learn/artificial-intelligence
W2	https://www.coursera.org/courses?query=artificial%20intelligence

Cours	Course Outcomes: On completion of this course, students can		
CO1	Describe the evolution of of AI and its working principles.		
CO2	Estimate different kinds of heuristic search algorithms and get feasible solution for AI problems.		
CO3	Classify optimized concepts of using various problem reduction techniques.		
CO4	Express various Knowledge Representation (KR) techniques		
CO5	Implement different kinds of Expert Systems.		

C	OMPUTER GRAPHICS		
Subject Code	18XXITOXXXJ	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1:			Hours
INTRODUCTION: Application a	reas of computer graphics, overv	view of graphic	
system, video display devices, rast monitors and work stations, input de		stems, graphics	10
Unit -2:			
OUTPUT PRIMITIVES : Points an	nd lines, line drawing algorithms,	mid-point circle	
algorithm. [TB1:			10
FILLED AREA PRIMITIVES: s	can-line polygon fill algorithm, be	oundary fill and	10
flood fill algorithm.			
Unit – 3:			
2-D GEOMETRICAL TRANSFORMATIONS : Translation, scaling, rotation,			
reflection and shear, transformation matrix representations and homogeneous co-			
ordinates, composite transformations, transformations between coordinates.			
2 D VIEWING. The viewing nine line viewing accordingto assert asserts window			12
2-D VIEWING: The viewing pipe-line, viewing coordinate reference frame, window to view part as ordinate transformations, viewing function. Cohon Sutherland, and			
to view-port co-ordinate transformations, viewing function, Cohen-Sutherland and Cyrus-beck line clipping algorithms.			
Unit – 4:			
3-D GEOMETRIC TRANSFO	DRMATIONS: Translation, rot	ation, scaling,	
reflection and shear transformation a	,		10
VISIBLE SURFACE DETECTION METHODS: Classification, back-face			
detection, depth-buffer, scan-line, de	pth sorting.		
Unit – 5:			
COMPUTER ANIMATION: Intr	oduction to animation, Color mo	dels, Design of	
animation sequence, general comput	er animation functions, raster anim	nation, computer	8
animation language, key frame syste	m, motion specification methods.		

Text	c(T) / Reference(R) Books:
T1	. Computer Graphics C version, Donald Hearn, M.Pauline Baker, Pearson
T2	Computer Graphics with Virtual Reality Systems, Rajesh K Maurya, Wiley
T3	Introduction to Computer Graphics, Using Java 2D and 3D, Frank Klawonn, Springer
T4	Computer Graphics, Steven Harrington, TMH
T5	Computer Graphics, Amarendra N Sinha, ArunUdai, TMH
R1	Computer Graphics Principles & practice, 2/e, Foley, VanDam, Feiner, Hughes,
	Pearson
R2	Computer Graphics, Peter, Shirley, CENGAGE
R3	Principles of Interactive Computer Graphics, Neuman, Sproul, TMH
R4	The Computer Graphics manual, Vol 2, David, Soloman, Springer
W2	Procedural elements for Computer Graphics, David F Rogers, 2/e, TMH

Cours	Course Outcomes: On completion of this course, students can		
CO1	Recognize the basic elements and applications of computer graphics.		
CO2	Discuss various algorithms for basic output primitives		
CO3	Use of geometric transformations on graphics objects.		
CO4	Describe 3-D transformations and Visible Surface Detection techniques.		
CO5	Interpret the layout of the animation steps and color models		

Open Elective Courses Offered by ME To other Departments

Open Elective Courses Offered by Mechanical Engineeringto other Departments

S.	Subject Code	Name of the subject	L	T	P	Cr
No.						
1.	18XXMEOX0XA	Operations Research	3	0	0	3
2.	18XXMEOX0XB	Fundamentals of Mechanical Engineering	3	0	0	3
3.	18XXMEOX0XC	Industrial Robotics	3	0	0	3
4.	18XXMEOX0XD	Engineering Materials	3	0	0	3
5.	18XXMEOX0XE	Introduction to Material Handling	3	0	0	3
6.	18XXMEOX0XF	Production Planning and Control	3	0	0	3
7.	18XXMEOX0XG	Non-Conventional Sources of Energy	3	0	0	3
8.	18XXMEOX0XH	Fluid Mechanics and Fluid Machinery	3	0	0	3

Operations Research					
SEMESTER - XX					
Subject Code	Subject Code 18XXMEOX0XA Internal Marks 30				
Number of Lecture Hours/Week	3(L)	External Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
Credits = 03					

Enable the students to

- 1. Understand the definition, scope, objectives, phases, models and limitations of operations research and developing the ability to formulate the linear programming problems for minimizing the project cost and maximizing its profit.
- 2. Solve linear programming problems using various techniques based on the constraints
- 3. Understand about different application areas of operations research like transportation problem, assignment model, sequencing models.
- 4. Suggest optimal sequence and replacement policy and economic order quantities to be maintained for better and economic growth of the industry.
- 5. Suggest optimal game strategies and estimation of waiting times in waiting line problems in the competitive business world.

problems in the competitive business world.	
Unit -1	Hours
Introduction to Operations Research: Definition, Features, types of OR	ĺ
models, Methodology, Tools, Limitations and applications of Linear	ĺ
Programming.	10
Linear Programming-I: Introduction, Formulation of Linear Programming	10
Problem (LPP), Assumptions for solving LPP, Applications of LPP, Graphical	ĺ
method of solving LPP.	
Unit -2	
Linear Programming-II: Introduction, steps in solving problems using simplex	ı
method, Principle of simplex method- Maximization and minimization problems,	ı
solution by simplex method, limitations of LPP simplex method.	10
Linear Programming-III: Introduction, Concept of primal, dual relationship,	10
formulation of the dual of the primal problem, solution of LP problems using dual	ĺ
simplex method.	<u> </u>
Unit – 3	
Transportation Problem: Basics, Solution of Transportation problem with	ı
several methods, performing optimality test, degeneracy in transportation	ı
problem.	ı
Assignment model: Definition, Formulation, Different methods of solutions,	ı
Hungarian assignment method, unbalanced assignment problems, travelling	10
salesman problems.	ı
Sequencing problems: introduction, basics, types of sequencing problems,	ı
priority sequencing, sequencing n-jobs through two machines, n-jobs and m-	ı
machines, two jobs 3-machines case.	
Unit – 4	
Replacement: Introduction – replacement of items that deteriorate with time –	İ
when money value is not counted and counted – replacement of items that fail	İ
completely, group replacement.	10
Inventory Control: Introduction, Types of Inventories, Costs associated with	İ
inventories, the concept of EOQ, Deterministic inventory problems with no	

shortages, with shortage.	
Unit - 5	
Queuing Theory: Introduction, Queuing system, elements of Queuing system	
Operating characteristics of a Queuing system, Classification of queuing models:	
Model-I [M/M/1:∞ / FIFO], Model-III [M/M/1: N/FIFO].	
Game Theory: Introduction, Two Person Zero sum games, Maximin - Minimax	10
principle, Games without saddle points- mixed strategies, Graphical solution of	
2Xn, mX2 games, and Dominance property, P-system, S-system, Q-system and	
Ss-system	

- 1. Formulate and solve mathematical model (linear programming problem) for real situations like production and distribution of goods using basic linear programming techniques li graphical methods
- 2. Apply the concepts of linear programming for decision making like simplex and dual simplex algorithms in production industries.
- 3. Calculate the optimal values of cost, job distribution and placement using transportation, assignment and sequencing methods
- 4. Select the best optimal inventory and replacement time for the goods produced in an industry for its better and economic growth using inventory and replacement techniques.
- 5. Select the best optimal time and strategy to be followed by any organization to identify the waiting times and strategies to be implemented using waiting lines and game theory techniques for a continuous and successful growth of an industry.

TEXT BOOKS:

- 1. Operation Research / Premkumar Gupta, D.S. Hira / S. Chand
- 2. Operations Research / S.D.Sharma-KedarnathRamnath(JNTU)

REFERENCES:

- 1. Operations Research / R. Pannerselvam / PHI Publications.
- 2. Operation Research /J.K.Sharma/MacMilan.
- 3. Operation Research An Introduction / Taha / Pearson
- **4.** Operations Research / A.M.Natarajan, P. Balasubramani, A. Tamilarasi / Pearson Education.

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- **3.** Each full question will have sub question covering all topics under a course outcome

Fundamentals of Mechanical Engineering				
SEMESTER - XX				
Subject Code	18XXMEOX0XB	Internal Marks	30	
Number of Lecture Hours/Week	3(L)	External Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
Credits – 03				

Enable the students to

- 1. Understand the concepts of fluid properties like specific gravity, viscosity, density, surface tension
- 2. To study the classification of turbines and work done and efficiency of the different turbines and also study about draft tube theory and to determine the function efficiency.
- 3. To study about specific speed and performance characteristics of different types of
- 4. To study automobile engine working, valve timing and associated systems such as lubricating system, cooling system, fuel feed system, ignition system etc., their necessity, requirements, construction details, different types and their working
- 6. To study the construction, working principles and advantages of belt and rope drives, selection of belt drive- types of belt drives, V-belts, types of coupling.

selection of self-differ types of self-diffes, visites, types of coupling.	
Unit -1	Hours
Fluid Mechanics: Dimensions and units: physical properties of fluids- specific gravity, viscosity and its significance, surface tension, capillarity, and vapor pressure. Atmospheric gauge and vacuum pressure – Measurement of pressure. Manometers- Piezometer, U-tube, inverted and differential manometers.	10
Unit -2	
Impact of jets: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.	10
Unit – 3	
Hydraulic Turbines and Governing systems: Classification of turbines; Working principle, Efficiency calculation and Design principles for Pelton Wheel, Francis and for Kaplan turbines; Governing of turbines; Performance and characteristic curves	10
Unit – 4	
I. C. Engines: Classification, working principles – valve and port timing diagrams – air standard cycles –fuel injection system, carburetion, ignition, cooling and lubrication – Engine performance evaluation. Spark Ignition and Combustion Ignition engines –Classification, working principles, Types of engines.	10
Unit - 5	
Belt drives: Introduction, Belt and rope drives, selection of belt drive- types of belt drives, V-belts, velocity ratio of belt drives, slip of belt, creep of belt, tensions for flat belt drive, angle of contact, centrifugal tension, maximum tension of belt, Coupling: Brief introduction of coupling, Rigid couplings - muff, split muff and flange couplings, flexible couplings - flange coupling	10
Course outcomes:	

- 1. Understand the concepts of fluid properties like specific gravity, viscosity, density, surface tension.
- 2. To study the classification of turbines and work done and efficiency of the different turbines and also study about draft tube theory and to determine the function efficiency.
- 3. This study is also used for the estimation of efficiency and performance of the turbine with the study of characteristics curves.
- 4. To study automobile engine working, valve timing and associated systems such as lubricating system, cooling system, fuel feed system, ignition system etc., their necessity, requirements, construction details, different types and their working
- 5. To study the construction, working principles and advantages of belt and rope drives, selection of belt drive- types of belt drives, V-belts, types of coupling.

TEXT BOOKS:

- 1. Basic Mechanical Engineering / Pravin Kumar/ Pearson
- 2. Thermal Engineering-R.S Khurmi/JS Gupta/S.Chand.
- 3. Introduction to Engineering Materials / B.K. Agrawal/ McGraw Hill

REFERENCES:

- 1. Fundamental of Mechanical Engineering/ G.S. Sawhney/PHI
- 2. Thermal Science and Engineering / Dr. D.S. Kumar/ Kataria

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

In	dustrial Robotics		
Subject Code	18XXMEOX0XC	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits - 03

Enable the students to

- 1. Understand various applications of robotics and classification of coordinate system and control systems
- 2. Build the concepts of components of industrial robotics.
- 3. Determine kinematic analysis with D-H notation, forward and inverse kinematics
- 4. Model trajectory planning for a manipulator by avoiding obstacles
- 5. Understand different types of actuators and importance of application of robots in manufacturing

Unit -1	Hours
Introduction: Automation and Robotics, CAD/CAM and Robotics – An overview of Robotics –present and future applications – classification by coordinate system and control system.	10
Unit -2	
Components of the Industrial Robotics: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.	10
Unit – 3	
Motion Analysis: Homogeneous transformations as applicable to rotation and translation – problems. Manipulator Kinematics: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics – problems.	10
Unit – 4	
Trajectory Planning: General considerations in path description and generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion – Robot programming, languages and software packages-description of paths with a robot programming	10

language.	
Unit – 5	
Robot Actuators and Feed Back Components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors. Feedback components: position sensors—potentiometers, resolvers, encoders—Velocity sensors. Robot Applications in Manufacturing: Material Transfer—Material handling, loading and unloading—Processing—spot and continuous arc welding & spray painting—Assembly and Inspection.	10

- 1. Understand various applications of robotics and classification of coordinate system and control systems
- 2. Build the concepts of components of industrial robotics.
- 3. Apply kinematic analysis with D-H notation, forward and inverse kinematics
- 4. Model trajectory planning for a manipulator by avoiding obstacles.
- 5. Understand different types of actuators and various applications of robots in manufacturing

TEXT BOOKS:

- 1.Industrial Robotics / Groover M P /Mc Graw Hill
- 2. Introduction to Robotics / John J. Craig/ Pearson

REFERENCES:

1.Introduction to Robotics/ Saeed B Niku / Wiely Publications.

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

ENGINEERING MATERIALS			
SEMESTER XX			
Subject Code	18XXMEOX0XD	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits - 03

Course objectives:

This course will enable students to:

- 1. Classify different bonds in solids and understand crystallization of the metals, for the formation of the solid solutions and compounds.
- 2. Understand different phase diagrams.
- 3. Recorgnize the property requirements of a given application and suggest a suitable ferrous and non ferrous metal and their alloys.
- 4. Illustrate the property requirements of a given application and suggest appropriate heat treatment
- 5. Identify the property requirements of a given application and suggest a suitable ceramics, composite materials
- 6. Identify the relationships between structure, composition and properties of different engineering materials.

Unit -1	Hours
Structure of Metals and Constitution of alloys: Bonds in Solids – Metallic bond - crystallization of metals, grain and grain boundaries, effect of grain boundaries on the properties of metal / alloys – determination of grain size. Necessity of alloying, types of solid solutions, Hume Rothery's rules, intermediate alloy phases, and electron compounds. Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stress-strain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery.	10
Unit -2	
Equilibrium Diagrams: Experimental methods of construction of equilibrium diagrams, Isomorpous alloy systems, equilibrium cooling and heating of alloys, lever rule, coring, miscibility gaps, eutectic systems, congruent melting intermediate phases, peritectic reaction. Transformations in the solid state – allotropy, eutectoid, peritectoid reactions, phase rule, relationship between equilibrium diagrams and properties of alloys.	8
Unit - 3	
Ferrous & non-ferrous metals and their alloys Structure and properties of white cast iron, malleable cast iron, grey cast iron, spheroid graphite cast iron, alloy cast irons. Classification of steels, structure and properties of plain carbon steels, low alloy steels, Hadfield manganese steels, tool and die steels. Structure and properties of copper and its alloys, Aluminum and its alloys, Titanium and its alloys	12
Unit – 4	
Heat treatment of Alloys: Annealing, normalizing, hardening, TTT diagrams, tempering, hardenability, surface-hardening methods (carburizing, carbo-nitriding, cyaniding, induction hardening and flame hardening), age hardening treatment,	8

and cryogenic treatment of alloys. vacuum and plasma hardening	
Unit-5	
Ceramic and composite materials: Crystalline ceramics, glasses, cermets, abrasive materials, nanomaterial's – definition, properties and applications of the above. Classification of composites, various methods of component manufacture of composites, particle – reinforced materials, fiber reinforced materials, metal ceramic mixtures, metal – matrix composites and C – C composites.	12

On completion of the course, student will be able to

- 1. Classify different bonds in solids and understand crystallization of the metals, for the formation of the solid solutions and compounds.
- 2. Different phase diagrams and study of binary phase diagrams
- 3. Recorgnize the property requirements of a given application and suggest suitable ferrous & non ferrous alloys
- 4. Analyze the property requirements of a given application and suggest appropriate heat treatment
- 5. Identified the property requirements of a given application and suggest a suitable ceramics, composite materials
- 6. Understand the relationships between structure, composition and properties of different engineering materials

Text Books:

- 1. Introduction to Physical Metallurgy Sidney H. Avener McGrawHill
- 2. Essential of Materials science and engineering Donald R.Askeland Thomson

Reference Books:

- 1. Material Science and Metallurgy V.D.Kodgire and S.V.Kodgire
- 2. Materials Science and engineering Callister & Baalasubrahmanyam
- 3. Material Science for Engineering students Fischer Elsevier Publishers.
- 4. Material science and Engineering V. Rahghavan
- 5. Introduction to Material Science and Engineering Yip-Wah Chung CRC Press.
- 6. Material Science and Metallurgy A V K Suryanarayana B S Publications.
- 7. Material Science and Metallurgy U. C. Jindal Pearson Publication

Web Source References:

- 1. https://www.iitm.ac.in/mmresearch
- 2. http://nptel.ac.in/courses/113106032/3
- 3. https://en.wikipedia.org/wiki/Materials_science

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

INTRODUCTION TO MATERIAL HANDLING			
S	EMESTER - XX		
Subject Code	18XXMEOX0XE	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Credits – 03			

COURSE OBJECTIVES:

Students should be able

- 1. To understand the classification of material handling equipment
- 2. To explain the usage of different material handling equipment in industry
- 3. To know how to connect loading stations to the different discharge conditions.
- 4. To explain the usage of cranes at industries
- 5. To explain the usage of hoists and monorails at industries

Unit -1	Hours
Introduction to materials handling, examples of materials equipment, examples of materials handling equipment, continuous conveying, intermittent conveying, examples, lifting, hoisting, handling of bulk goods and piece goods, cranes and conveyors, principles of calculation of conveying equipment, cycle time, bulk materials and bulk density, angle of repose, example for a belt conveyor and a simple hoist.	10
Unit -2	
Belt conveyors, constructional details, toughing angle, idlers, belt specifications, chutes, skirt boards, ploughs, belt conveyor layouts, belt trippers and typical examples, roller conveyors, overhead conveyors, apron conveyors, component parts and operational details and applications with typical layouts.	10
Unit – 3	
Unit materials handling and storage: Unit load concept (platform sheet industrial hand trucks, self contained unit load, palletless handling, introduction only), industrial hand trucks, powered industrial trucks, automated guided vehicles, basic storage and equipment system, Automated storage and retrieval systems (AS/RS), carosel storage system and its applications.	10
Unit – 4	
Cranes Jib cranes like wall mounted and travelling type, stability criteria, wheel loads, wheel trucks and bogeys, number of mechanisms in jib cranes, jib construction. Harbour cranes, luffing and level luffing cranes, shipyard gantry cranes,	10
Unit - 5	
Hoists and monorails Portal frames and slewing rings and bearings typical stability, calculations of portal cranes, types of hoists	10

Course outcomes:

- 1. Classify the material handling equipment
- 2. Explain the usage of different material handling equipment in industry
- 3. Discuss how to connect loading stations to the different discharge conditions
- 4. Associate the usage of cranes at industries
- 5. Associate the usage of hoists and monorails at industries

TEXT BOOKS

- 1. Material handling handbook, 2nd edition, ASME, 1985
- 2. Automation production systems and computer integrated manufacturing, Mikell P

Groover, Prentice Hall of India, 2002.

REFERENCE BOOK

- 1. R.O. Bailey, "Bulk material handling by conveyor belt I and II" M.A. Al
- 2. Frutchbaum, "Bulk solids handling

- 1. Question paper contains 12 Questions, 2 from each course outcome. The student must answer 6 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 12 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

PRODUCTION PLANNING AND CONTROL SEMESTER - XX			
Subject Code	118XXMEOX0XF	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
G - 14 - 02			

Credits – 03

Course Objectives:

Enable the students to

- 1. Understand the concepts of production design concepts for production and service systems
- 2. Apply forecasting techniques for various firms, namely qualitative & quantitative methods to optimize/make best use of resources in achieving their objectives.
- 3. Identify different strategies employed in manufacturing and service industries to plan inventory
- 4. Apply different scheduling policies in planning and control and make best use of resources.
- 5. Measure the effectiveness, identify likely areas for improvement, develop and implement improved planning and control methods for production systems.

implement improved planning and control methods for production systems.	
Unit -1	Hours
Introduction : Definition – objectives and functions of production planning and	
control – elements of production control – types of production – organization of	10
production planning and control department – internal organization of	10
department.	
Unit -2	
Forecasting – importance of forecasting – types of forecasting, their uses –	
general principles of forecasting – forecasting techniques – qualitative methods	10
and quantitative methods.	
Unit – 3	
Inventory management – functions of inventories – relevant inventory costs –	
ABC analysis – VED analysis – EOQ models – Inventory control systems – P–	
Systems and Q-Systems	12
Material Management Techniques:	12
Introduction to MRP I, MRP II, ERP, LOB (Line of Balance), JIT and KANBAN	
system.	
Unit – 4	
Routing & Scheduling – definition – routing procedure –route sheets – bill of	
material – factors affecting routing procedure, schedule –definition – difference	10
with loading, Scheduling policies – techniques, standard scheduling methods, line	10
balancing, aggregate planning	
Unit – 5	
Dispatching – activities of dispatcher – dispatching procedure – follow up–	
definition – reason for existence of functions – types of follow up, expediting,	8
controlling aspects. Applications of computer in production planning and control.	

Course outcomes:

On completion of this course, students will be be able to:

- 1. **Choose** the acceptable production planning and control system for designing and development of a product.
- 2. **Examine** the forecasts made in the manufacturing and service sectors by using selected quantitative and qualitative techniques.

- 3. **Categorize** the production systems based on the inventory principles and techniques to optimize/make best use of resources.
- 4. **Select and use** an appropriate principles/methods/ techniques/ modern concept with reference to given application/situation in the preparation of route sheets with scheduling and loading in manufacturing systems
- 5. **Illustrate** the role of a dispatching and follow-up necessary at various stages of manufacturing in an industry.

1.

Text Books:

- 1. Elements of Production Planning and Control / Samuel Eilon.
- 2. Manufacturing, Planning and Control, Partik Jonsson Stig-Arne Mattsson, Tata Mc Graw Hill.
- 3. MECHATRONICS Integrated Mechanical Electronics Systems/KP Ramachandran, GK Vijaya Raghavan & MS Balasundaram/WILEY India Edition

Reference Books:

- 1. Production Planning and Control, Mukhopadyay, PHI.
- 2. Inventory Control Theory and Practice / Martin K. Starr and David W. Miller/Prentice-Hall
- 3. Production Control A Quantitative Approach / John E. Biegel/Prentice-Hall

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

NON-CONVENTIONAL SOURCES OF ENERGY			
SEMESTER-XX			
Subject code	18XXMEOX0XG	Internal marks	30
Number of lecture hours/Week	3(L)	External marks	70
Total No Of lecture hours	50	Exam hours	03
Credits-03			

Enable the students to:

- 1. Understand the principles and working of solar and solar energy collection.
- 2. Apply the principles of solar energy storage, applications in generation of electric power.
- 3. Apply the knowledge of Wind energy and Biomass, in generation of electric power production.
- 4. Apply the Principles and working of Geothermal energy power plant, OTEC plants, tidal, wave energy and Mini hydel power plants in generation of the electric power
- 5. Apply the principles of direct energy conversion systems like Thermoelectric generators, MHD generators and fuel cells, in generation of electric power production

MHD generators and fuel cells, in generation of electric power production	
Unit-1	Hours
Principles of Solar Radiation: Role and potential of new and renewable	
source, the solar energy option, Environmental impact of solar power - the	
solar constant, extra-terrestrial and terrestrial solar radiation, Solar radiation on	
titled surface, Instruments for measuring solar radiation and sun shine, solar	8
radiation data.	
Solar Energy Collection: Flat plate and concentrating collectors,	
classification of concentrating collectors, advanced collectors	
Unit-2	
Solar Energy Storage and Applications: Different methods, sensible, latent	
heat and stratified storage, solar ponds. Solar applications - solar	6
heating/cooling techniques, solar distillation and drying, photovoltaic energy	0
conversion.	
Unit-3	
Wind Energy: Sources and potentials, horizontal and vertical axis windmills,	
performance characteristics, Betz criteria	
Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types	10
of Bio-gas digesters, gas yield, combustion characteristics of biogas,	
utilization for cooking, I.C. Engine operation, and economic aspects.	
Unit-4	
Geothermal Energy: Resources, types of wells, methods of harnessing the	
energy, potential in India. Ocean Energy - OTEC, Principles, utilization,	
setting of OTEC plants, thermodynamic cycles.	10
Tidal and Wave energy: Potential and conversion techniques, mini-hydel	
power plants, their economics.	
Unit-5	
Direct Energy Conversion: Need for DEC, Carnot cycle, limitations,	
Principles of DEC. Thermoelectric generators, Seebeck, Peltier and Joule	
Thompson effects, figure of merit, materials, applications, MHD generators,	
principles, dissociation and ionization, hall effect, magnetic flux, MHD	16
accelerator, MHD engine, power generation systems, electron gas dynamic	
conversion, economic aspects. Fuel cells, principle, faraday's laws,	
thermodynamic aspects, selection of fuels and operating conditions.	

- 1. The student understands the principles and working of solar and solar energy collection.
- 2. The students apply the principles of solar energy storage, applications in power generation.
- 3. The students Apply the knowledge of Wind energy and Biomass, in generation of power
- 4. The students Apply the Principles and working of Geothermal energy power plant, OTEC plants, tidal, wave energy and Mini hydel power plants in generation of the electric power.
- 5. Apply the principles of direct energy conversion systems like Thermoelectric generators, MHD generators and fuel cells, in generation of electric power.

Text books:

- 1. Renewable Energy Resources / Tiwari and Ghosal / Narosa
- 2. Non- conventional Energy Sources / G.D. Rai/ Khanna Publishers
- 3. Biological Energy Resources/ Malcolm Fleischer & Chris Lawis/ E&FN Spon

Reference books:

- 1. Renewable Energy Sources / Twidell& Weir
- 2. Solar Power Engineering / B.S. Magal Frank Kreith& J.F. Kreith
- 3. Principles of Solar Energy / Frank Krieth& John F Kreider
- 4. Non-Conventional Energy / Ashok V Desai / Wiley Eastern

- 1. Question paper contains 10 questions,2 from each course outcomes, the student must answer 5 full questions by selecting one question from each course outcome (Internal choice)
- 2. All question carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

FLUID MECHANICS AND FLUID MACHINERY SEMESTER -XX			
Subject Code	18XXMEOX0XH	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits – 03

- 1. Understand the fundamental properties of fluid and calculate fluid pressure using the manometer.
- 2. Apply the differential conservation equations of mass, momentum, and energy to fluid flow problems.
- 3. Evaluate major and minor losses in pipes and also discuss boundary layer concepts.
- 4. Solve problems on the turbo machines like turbines using analytical method and velocity triangles.
- 5. Discuss the Classification and working principles of pumps and evaluate the performance of hydraulic machines.

Unit -1	Hours
Fluids: Definition of fluid, Fluid properties, Atmospheric gauge and vacuum pressure – measurement of pressure. Manometers- Piezometer, U-tube, inverted and differential manometers. Pascal's law, hydrostatic law. Buoyancy, forces on submerged bodies, stability of floating bodies.	
Unit -2	
Fluid Kinematics: Introduction, flow types. Equation of continuity for one dimensional flow. Stream line, path line and streak lines and stream tube. Stream function and velocity potential function. Fluid Dynamics: surface and body forces –Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its applications, force on pipe bend.	10
Unit – 3	
Closed Conduit Flow: Reynold's experiment- Darcy Weisbach equation, Minor losses in pipes- pipes in series and pipes in parallel- total energy line hydraulic gradient line. Basics of Turbo Machinery: Hydrodynamic force of jets on stationery and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.	10
Unit – 4	
Turbines: Hydraulic Turbines: classification of turbines, Working and efficiencies of Pelton wheel, Francis and Kaplan turbines. Importance of Draft Tube. Hydraulic Quantities: Unit and specific quantities, characteristic curves,	10

governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.	
Unit – 5	
Pumps: Centrifugal Pumps: Classification, working, work done – manometric	10
head losses and efficiencies- specific speed- pumps in series and parallel	
performance characteristic curves, cavitation & NPSH.	
Reciprocating Pumps: Working, Discharge, slip, indicator diagrams.	

- 1.Demonstrate various properties of fluids, pressure measurement devices and their applications.
- 2.Identify the kinematics and dynamics properties of fluids flowing in different conditions and its effects on the bodies.
- 3.Estimate the effect of various losses in fluids due to flowing and obstructions and understand using the concepts of pipe losses and Boundary layer theory.
- 4. Analyze the performance of hydraulic turbines, units and specific quantities based on the design by applying the knowledge of turbomachinery using analytical methods and velocity triangles.
- 5. Analyze the performance of various hydraulic pumps based on workings and design.

TEXT BOOKS

- 1. Hydraulics, fluid mechanics and Hydraulic machinery Modi and Seth
- 2. Fluid Mechanics and Hydraulic Machines/ RK Bansal/Laxmi Publications (P) Ltd.

REFERENCE BOOKS

- 1. Fluid Mechanics and Hydraulic Machines by Rajput
- 2. Fluid Mechanics & Turbo machinery by Dixon, 7th Edn, Elesvier
- 3. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International
- 4. Fluid Mechanics- Fundementals and Applications by Y.A. Cengel, J.M.Cimbala, 6th Edn, McGrawHill
- 5. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria& Sons.

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full
 - questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome